Cargando…

Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling

Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron da...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Tao, Gao, Peng, Huang, Yifan, Wu, Mengyuan, Yi, Jiang, Zhou, Zheng, Zhao, Xuan, Jiang, Tao, Liu, Hao, Qin, Tao, Yang, Zhenqi, Wang, Xiaowei, Bao, Tianyi, Chen, Jian, Zhao, Shujie, Yin, Guoyong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053403/
https://www.ncbi.nlm.nih.gov/pubmed/36963288
http://dx.doi.org/10.1016/j.redox.2023.102682
_version_ 1785015405858783232
author Xu, Tao
Gao, Peng
Huang, Yifan
Wu, Mengyuan
Yi, Jiang
Zhou, Zheng
Zhao, Xuan
Jiang, Tao
Liu, Hao
Qin, Tao
Yang, Zhenqi
Wang, Xiaowei
Bao, Tianyi
Chen, Jian
Zhao, Shujie
Yin, Guoyong
author_facet Xu, Tao
Gao, Peng
Huang, Yifan
Wu, Mengyuan
Yi, Jiang
Zhou, Zheng
Zhao, Xuan
Jiang, Tao
Liu, Hao
Qin, Tao
Yang, Zhenqi
Wang, Xiaowei
Bao, Tianyi
Chen, Jian
Zhao, Shujie
Yin, Guoyong
author_sort Xu, Tao
collection PubMed
description Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI.
format Online
Article
Text
id pubmed-10053403
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-100534032023-03-30 Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling Xu, Tao Gao, Peng Huang, Yifan Wu, Mengyuan Yi, Jiang Zhou, Zheng Zhao, Xuan Jiang, Tao Liu, Hao Qin, Tao Yang, Zhenqi Wang, Xiaowei Bao, Tianyi Chen, Jian Zhao, Shujie Yin, Guoyong Redox Biol Research Paper Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI. Elsevier 2023-03-20 /pmc/articles/PMC10053403/ /pubmed/36963288 http://dx.doi.org/10.1016/j.redox.2023.102682 Text en © 2023 The Authors. Published by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Xu, Tao
Gao, Peng
Huang, Yifan
Wu, Mengyuan
Yi, Jiang
Zhou, Zheng
Zhao, Xuan
Jiang, Tao
Liu, Hao
Qin, Tao
Yang, Zhenqi
Wang, Xiaowei
Bao, Tianyi
Chen, Jian
Zhao, Shujie
Yin, Guoyong
Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling
title Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling
title_full Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling
title_fullStr Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling
title_full_unstemmed Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling
title_short Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling
title_sort git1-pgk1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating keap1/nrf2 signaling
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053403/
https://www.ncbi.nlm.nih.gov/pubmed/36963288
http://dx.doi.org/10.1016/j.redox.2023.102682
work_keys_str_mv AT xutao git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT gaopeng git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT huangyifan git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT wumengyuan git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT yijiang git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT zhouzheng git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT zhaoxuan git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT jiangtao git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT liuhao git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT qintao git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT yangzhenqi git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT wangxiaowei git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT baotianyi git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT chenjian git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT zhaoshujie git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling
AT yinguoyong git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling