Cargando…
Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling
Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron da...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053403/ https://www.ncbi.nlm.nih.gov/pubmed/36963288 http://dx.doi.org/10.1016/j.redox.2023.102682 |
_version_ | 1785015405858783232 |
---|---|
author | Xu, Tao Gao, Peng Huang, Yifan Wu, Mengyuan Yi, Jiang Zhou, Zheng Zhao, Xuan Jiang, Tao Liu, Hao Qin, Tao Yang, Zhenqi Wang, Xiaowei Bao, Tianyi Chen, Jian Zhao, Shujie Yin, Guoyong |
author_facet | Xu, Tao Gao, Peng Huang, Yifan Wu, Mengyuan Yi, Jiang Zhou, Zheng Zhao, Xuan Jiang, Tao Liu, Hao Qin, Tao Yang, Zhenqi Wang, Xiaowei Bao, Tianyi Chen, Jian Zhao, Shujie Yin, Guoyong |
author_sort | Xu, Tao |
collection | PubMed |
description | Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI. |
format | Online Article Text |
id | pubmed-10053403 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-100534032023-03-30 Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling Xu, Tao Gao, Peng Huang, Yifan Wu, Mengyuan Yi, Jiang Zhou, Zheng Zhao, Xuan Jiang, Tao Liu, Hao Qin, Tao Yang, Zhenqi Wang, Xiaowei Bao, Tianyi Chen, Jian Zhao, Shujie Yin, Guoyong Redox Biol Research Paper Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI. Elsevier 2023-03-20 /pmc/articles/PMC10053403/ /pubmed/36963288 http://dx.doi.org/10.1016/j.redox.2023.102682 Text en © 2023 The Authors. Published by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Xu, Tao Gao, Peng Huang, Yifan Wu, Mengyuan Yi, Jiang Zhou, Zheng Zhao, Xuan Jiang, Tao Liu, Hao Qin, Tao Yang, Zhenqi Wang, Xiaowei Bao, Tianyi Chen, Jian Zhao, Shujie Yin, Guoyong Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling |
title | Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling |
title_full | Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling |
title_fullStr | Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling |
title_full_unstemmed | Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling |
title_short | Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling |
title_sort | git1-pgk1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating keap1/nrf2 signaling |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053403/ https://www.ncbi.nlm.nih.gov/pubmed/36963288 http://dx.doi.org/10.1016/j.redox.2023.102682 |
work_keys_str_mv | AT xutao git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT gaopeng git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT huangyifan git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT wumengyuan git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT yijiang git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT zhouzheng git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT zhaoxuan git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT jiangtao git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT liuhao git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT qintao git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT yangzhenqi git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT wangxiaowei git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT baotianyi git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT chenjian git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT zhaoshujie git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling AT yinguoyong git1pgk1interactionachievesselfprotectionagainstspinalcordischemiareperfusioninjurybymodulatingkeap1nrf2signaling |