Cargando…
Machine learning prognosis model based on patient-reported outcomes for chronic heart failure patients after discharge
BACKGROUND: Patient-reported outcomes (PROs) can be obtained outside hospitals and are of great significance for evaluation of patients with chronic heart failure (CHF). The aim of this study was to establish a prediction model using PROs for out-of-hospital patients. METHODS: CHF-PRO were collected...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053412/ https://www.ncbi.nlm.nih.gov/pubmed/36978124 http://dx.doi.org/10.1186/s12955-023-02109-x |
Sumario: | BACKGROUND: Patient-reported outcomes (PROs) can be obtained outside hospitals and are of great significance for evaluation of patients with chronic heart failure (CHF). The aim of this study was to establish a prediction model using PROs for out-of-hospital patients. METHODS: CHF-PRO were collected in 941 patients with CHF from a prospective cohort. Primary endpoints were all-cause mortality, HF hospitalization, and major adverse cardiovascular events (MACEs). To establish prognosis models during the two years follow-up, six machine learning methods were used, including logistic regression, random forest classifier, extreme gradient boosting (XGBoost), light gradient boosting machine, naive bayes, and multilayer perceptron. Models were established in four steps, namely, using general information as predictors, using four domains of CHF-PRO, using both of them and adjusting the parameters. The discrimination and calibration were then estimated. Further analyze were performed for the best model. The top prediction variables were further assessed. The Shapley additive explanations (SHAP) method was used to explain black boxes of the models. Moreover, a self-made web-based risk calculator was established to facilitate the clinical application. RESULTS: CHF-PRO showed strong prediction value and improved the performance of the models. Among the approaches, XGBoost of the parameter adjustment model had the highest prediction performance with an area under the curve of 0.754 (95% CI: 0.737 to 0.761) for death, 0.718 (95% CI: 0.717 to 0.721) for HF rehospitalization and 0.670 (95% CI: 0.595 to 0.710) for MACEs. The four domains of CHF-PRO, especially the physical domain, showed the most significant impact on the prediction of outcomes. CONCLUSION: CHF-PRO showed strong prediction value in the models. The XGBoost models using variables based on CHF-PRO and the patient’s general information provide prognostic assessment for patients with CHF. The self-made web-based risk calculator can be conveniently used to predict the prognosis for patients after discharge. CLINICAL TRIAL REGISTRATION: URL: http://www.chictr.org.cn/index.aspx; Unique identifier: ChiCTR2100043337. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12955-023-02109-x. |
---|