Cargando…
Machine learning prognosis model based on patient-reported outcomes for chronic heart failure patients after discharge
BACKGROUND: Patient-reported outcomes (PROs) can be obtained outside hospitals and are of great significance for evaluation of patients with chronic heart failure (CHF). The aim of this study was to establish a prediction model using PROs for out-of-hospital patients. METHODS: CHF-PRO were collected...
Autores principales: | Tian, Jing, Yan, Jingjing, Han, Gangfei, Du, Yutao, Hu, Xiaojuan, He, Zixuan, Han, Qinghua, Zhang, Yanbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053412/ https://www.ncbi.nlm.nih.gov/pubmed/36978124 http://dx.doi.org/10.1186/s12955-023-02109-x |
Ejemplares similares
-
Dynamic Trajectory of a Patient-Reported Outcome and Its Associated Factors for Patients with Chronic Heart Failure: A Growth Mixture Model Approach
por: Tian, Jing, et al.
Publicado: (2022) -
Social and therapeutic decline earlier than physical and psychological domains after discharge in heart failure patients: A patient-reported outcome measurements of latent transition analysis
por: Yang, Hong, et al.
Publicado: (2022) -
The Causal Effects of Anxiety-Mediated Social Support on Death in Patients with Chronic Heart Failure: A Multicenter Cohort Study
por: Yan, Jingjing, et al.
Publicado: (2022) -
Hierarchical management of chronic heart failure: a perspective based on the latent structure of comorbidities
por: Zheng, Chu, et al.
Publicado: (2021) -
Application of Extreme Learning Machine in the Survival Analysis of Chronic Heart Failure Patients With High Percentage of Censored Survival Time
por: Yang, Hong, et al.
Publicado: (2021)