Cargando…
The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier
Blood-to-retina transport across the inner blood–retinal barrier (BRB) is a key determinant of retinal drug concentration and pharmacological effect. Recently, we reported on the amantadine-sensitive drug transport system, which is different from well-characterized transporters, at the inner BRB. Si...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053584/ https://www.ncbi.nlm.nih.gov/pubmed/36986534 http://dx.doi.org/10.3390/ph16030435 |
_version_ | 1785015447865786368 |
---|---|
author | Shinozaki, Yusuke Tega, Yuma Akanuma, Shin-ichi Hosoya, Ken-ichi |
author_facet | Shinozaki, Yusuke Tega, Yuma Akanuma, Shin-ichi Hosoya, Ken-ichi |
author_sort | Shinozaki, Yusuke |
collection | PubMed |
description | Blood-to-retina transport across the inner blood–retinal barrier (BRB) is a key determinant of retinal drug concentration and pharmacological effect. Recently, we reported on the amantadine-sensitive drug transport system, which is different from well-characterized transporters, at the inner BRB. Since amantadine and its derivatives exhibit neuroprotective effects, it is expected that a detailed understanding of this transport system would lead to the efficient retinal delivery of these potential neuroprotective agents for the treatment of retinal diseases. The objective of this study was to characterize the structural features of compounds for the amantadine-sensitive transport system. Inhibition analysis conducted on a rat inner BRB model cell line indicated that the transport system strongly interacts with lipophilic amines, especially primary amines. In addition, lipophilic primary amines that have polar groups, such as hydroxy and carboxy groups, did not inhibit the amantadine transport system. Furthermore, certain types of primary amines with an adamantane skeleton or linear alkyl chain exhibited a competitive inhibition of amantadine uptake, suggesting that these compounds are potential substrates for the amantadine-sensitive drug transport system at the inner BRB. These results are helpful for producing the appropriate drug design to improve the blood-to-retina delivery of neuroprotective drugs. |
format | Online Article Text |
id | pubmed-10053584 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100535842023-03-30 The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier Shinozaki, Yusuke Tega, Yuma Akanuma, Shin-ichi Hosoya, Ken-ichi Pharmaceuticals (Basel) Article Blood-to-retina transport across the inner blood–retinal barrier (BRB) is a key determinant of retinal drug concentration and pharmacological effect. Recently, we reported on the amantadine-sensitive drug transport system, which is different from well-characterized transporters, at the inner BRB. Since amantadine and its derivatives exhibit neuroprotective effects, it is expected that a detailed understanding of this transport system would lead to the efficient retinal delivery of these potential neuroprotective agents for the treatment of retinal diseases. The objective of this study was to characterize the structural features of compounds for the amantadine-sensitive transport system. Inhibition analysis conducted on a rat inner BRB model cell line indicated that the transport system strongly interacts with lipophilic amines, especially primary amines. In addition, lipophilic primary amines that have polar groups, such as hydroxy and carboxy groups, did not inhibit the amantadine transport system. Furthermore, certain types of primary amines with an adamantane skeleton or linear alkyl chain exhibited a competitive inhibition of amantadine uptake, suggesting that these compounds are potential substrates for the amantadine-sensitive drug transport system at the inner BRB. These results are helpful for producing the appropriate drug design to improve the blood-to-retina delivery of neuroprotective drugs. MDPI 2023-03-13 /pmc/articles/PMC10053584/ /pubmed/36986534 http://dx.doi.org/10.3390/ph16030435 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shinozaki, Yusuke Tega, Yuma Akanuma, Shin-ichi Hosoya, Ken-ichi The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier |
title | The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier |
title_full | The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier |
title_fullStr | The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier |
title_full_unstemmed | The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier |
title_short | The Structural Characteristics of Compounds Interacting with the Amantadine-Sensitive Drug Transport System at the Inner Blood–Retinal Barrier |
title_sort | structural characteristics of compounds interacting with the amantadine-sensitive drug transport system at the inner blood–retinal barrier |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053584/ https://www.ncbi.nlm.nih.gov/pubmed/36986534 http://dx.doi.org/10.3390/ph16030435 |
work_keys_str_mv | AT shinozakiyusuke thestructuralcharacteristicsofcompoundsinteractingwiththeamantadinesensitivedrugtransportsystemattheinnerbloodretinalbarrier AT tegayuma thestructuralcharacteristicsofcompoundsinteractingwiththeamantadinesensitivedrugtransportsystemattheinnerbloodretinalbarrier AT akanumashinichi thestructuralcharacteristicsofcompoundsinteractingwiththeamantadinesensitivedrugtransportsystemattheinnerbloodretinalbarrier AT hosoyakenichi thestructuralcharacteristicsofcompoundsinteractingwiththeamantadinesensitivedrugtransportsystemattheinnerbloodretinalbarrier AT shinozakiyusuke structuralcharacteristicsofcompoundsinteractingwiththeamantadinesensitivedrugtransportsystemattheinnerbloodretinalbarrier AT tegayuma structuralcharacteristicsofcompoundsinteractingwiththeamantadinesensitivedrugtransportsystemattheinnerbloodretinalbarrier AT akanumashinichi structuralcharacteristicsofcompoundsinteractingwiththeamantadinesensitivedrugtransportsystemattheinnerbloodretinalbarrier AT hosoyakenichi structuralcharacteristicsofcompoundsinteractingwiththeamantadinesensitivedrugtransportsystemattheinnerbloodretinalbarrier |