Cargando…
UAV Trajectory Design and Power Optimization for Terahertz Band-Integrated Sensing and Communications
Sixth generation (6G) wireless networks require very low latency and an ultra-high data rate, which have become the main challenges for future wireless communications. To effectively balance the requirements of 6G and the extreme shortage of capacity within the existing wireless networks, sensing-as...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053622/ https://www.ncbi.nlm.nih.gov/pubmed/36991716 http://dx.doi.org/10.3390/s23063005 |
Sumario: | Sixth generation (6G) wireless networks require very low latency and an ultra-high data rate, which have become the main challenges for future wireless communications. To effectively balance the requirements of 6G and the extreme shortage of capacity within the existing wireless networks, sensing-assisted communications in the terahertz (THz) band with unmanned aerial vehicles (UAVs) is proposed. In this scenario, the THz-UAV acts as an aerial base station to provide information on users and sensing signals and detect the THz channel to assist UAV communication. However, communication and sensing signals that use the same resources can cause interference with each other. Therefore, we research a cooperative method of co-existence between sensing and communication signals in the same frequency and time allocation to reduce the interference. We then formulate an optimization problem to minimize the total delay by jointly optimizing the UAV trajectory, frequency association, and transmission power of each user. The resulting problem is a non-convex and mixed integer optimization problem, which is challenging to solve. By resorting to the Lagrange multiplier and proximal policy optimization (PPO) method, we propose an overall alternating optimization algorithm to solve this problem in an iterative way. Specifically, given the UAV location and frequency, the sub-problem of the sensing and communication transmission powers is transformed into a convex problem, which is solved by the Lagrange multiplier method. Second, in each iteration, for given sensing and communication transmission powers, we relax the discrete variable to a continuous variable and use the PPO algorithm to tackle the sub-problem of joint optimization of the UAV location and frequency. The results show that the proposed algorithm reduces the delay and improves the transmission rate when compared with the conventional greedy algorithm. |
---|