Cargando…

Electrical Heaters for Anti/De-Icing of Polymer Structures

The problem of icing for surfaces of engineering structures requires attention more and more every year. Active industrialization in permafrost zones is currently underway; marine transport in Arctic areas targets new goals; the requirements for aerodynamically critical surfaces of wind generators a...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiverskii, Aleksei V., Owais, Mohammad, Mahato, Biltu, Abaimov, Sergey G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053693/
https://www.ncbi.nlm.nih.gov/pubmed/36987354
http://dx.doi.org/10.3390/polym15061573
Descripción
Sumario:The problem of icing for surfaces of engineering structures requires attention more and more every year. Active industrialization in permafrost zones is currently underway; marine transport in Arctic areas targets new goals; the requirements for aerodynamically critical surfaces of wind generators and aerospace products, serving at low temperatures, are increasing; and fiber-reinforced polymer composites find wide applicability in these structural applications demanding the problem of anti/de-icing to be addressed. The traditional manufacturing approaches are superimposed with the new technologies, such as 3D printers and robotics for laying heat wires or cheap and high-performance Thermal Sprayed methods for metallic cover manufacturing. Another next step in developing heaters for polymer structures is nano and micro additives to create electrically conductive heating networks within. In our study, we review and comparatively analyze the modern technologies of structure heating, based on resistive heating composites.