Cargando…
Structural basis of the inhibition of cystathionine γ‐lyase from Toxoplasma gondii by propargylglycine and cysteine
Cystathionine γ‐lyase (CGL) is a PLP‐dependent enzyme that catalyzes the last step of the reverse transsulfuration route for endogenous cysteine biosynthesis. The canonical CGL‐catalyzed process consists of an α,γ‐elimination reaction that breaks down cystathionine into cysteine, α‐ketobutyrate, and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053738/ https://www.ncbi.nlm.nih.gov/pubmed/36883335 http://dx.doi.org/10.1002/pro.4619 |
_version_ | 1785015484326871040 |
---|---|
author | Fernández‐Rodríguez, Carmen Conter, Carolina Oyenarte, Iker Favretto, Filippo Quintana, Iban Martinez‐Chantar, Maria Luz Astegno, Alessandra Martínez‐Cruz, Luis Alfonso |
author_facet | Fernández‐Rodríguez, Carmen Conter, Carolina Oyenarte, Iker Favretto, Filippo Quintana, Iban Martinez‐Chantar, Maria Luz Astegno, Alessandra Martínez‐Cruz, Luis Alfonso |
author_sort | Fernández‐Rodríguez, Carmen |
collection | PubMed |
description | Cystathionine γ‐lyase (CGL) is a PLP‐dependent enzyme that catalyzes the last step of the reverse transsulfuration route for endogenous cysteine biosynthesis. The canonical CGL‐catalyzed process consists of an α,γ‐elimination reaction that breaks down cystathionine into cysteine, α‐ketobutyrate, and ammonia. In some species, the enzyme can alternatively use cysteine as a substrate, resulting in the production of hydrogen sulfide (H(2)S). Importantly, inhibition of the enzyme and consequently of its H(2)S production activity, makes multiresistant bacteria considerably more susceptible to antibiotics. Other organisms, such as Toxoplasma gondii, the causative agent of toxoplasmosis, encode a CGL enzyme (TgCGL) that almost exclusively catalyzes the canonical process, with only minor reactivity to cysteine. Interestingly, the substitution of N360 by a serine (the equivalent amino acid residue in the human enzyme) at the active site changes the specificity of TgCGL for the catalysis of cystathionine, resulting in an enzyme that can cleave both the CγS and the CβS bond of cystathionine. Based on these findings and to deepen the molecular basis underlying the enzyme‐substrate specificity, we have elucidated the crystal structures of native TgCGL and the variant TgCGL‐N360S from crystals grown in the presence of cystathionine, cysteine, and the inhibitor d,l‐propargylglycine (PPG). Our structures reveal the binding mode of each molecule within the catalytic cavity and help explain the inhibitory behavior of cysteine and PPG. A specific inhibitory mechanism of TgCGL by PPG is proposed. |
format | Online Article Text |
id | pubmed-10053738 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100537382023-04-01 Structural basis of the inhibition of cystathionine γ‐lyase from Toxoplasma gondii by propargylglycine and cysteine Fernández‐Rodríguez, Carmen Conter, Carolina Oyenarte, Iker Favretto, Filippo Quintana, Iban Martinez‐Chantar, Maria Luz Astegno, Alessandra Martínez‐Cruz, Luis Alfonso Protein Sci Full‐length Papers Cystathionine γ‐lyase (CGL) is a PLP‐dependent enzyme that catalyzes the last step of the reverse transsulfuration route for endogenous cysteine biosynthesis. The canonical CGL‐catalyzed process consists of an α,γ‐elimination reaction that breaks down cystathionine into cysteine, α‐ketobutyrate, and ammonia. In some species, the enzyme can alternatively use cysteine as a substrate, resulting in the production of hydrogen sulfide (H(2)S). Importantly, inhibition of the enzyme and consequently of its H(2)S production activity, makes multiresistant bacteria considerably more susceptible to antibiotics. Other organisms, such as Toxoplasma gondii, the causative agent of toxoplasmosis, encode a CGL enzyme (TgCGL) that almost exclusively catalyzes the canonical process, with only minor reactivity to cysteine. Interestingly, the substitution of N360 by a serine (the equivalent amino acid residue in the human enzyme) at the active site changes the specificity of TgCGL for the catalysis of cystathionine, resulting in an enzyme that can cleave both the CγS and the CβS bond of cystathionine. Based on these findings and to deepen the molecular basis underlying the enzyme‐substrate specificity, we have elucidated the crystal structures of native TgCGL and the variant TgCGL‐N360S from crystals grown in the presence of cystathionine, cysteine, and the inhibitor d,l‐propargylglycine (PPG). Our structures reveal the binding mode of each molecule within the catalytic cavity and help explain the inhibitory behavior of cysteine and PPG. A specific inhibitory mechanism of TgCGL by PPG is proposed. John Wiley & Sons, Inc. 2023-04-01 /pmc/articles/PMC10053738/ /pubmed/36883335 http://dx.doi.org/10.1002/pro.4619 Text en © 2023 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Full‐length Papers Fernández‐Rodríguez, Carmen Conter, Carolina Oyenarte, Iker Favretto, Filippo Quintana, Iban Martinez‐Chantar, Maria Luz Astegno, Alessandra Martínez‐Cruz, Luis Alfonso Structural basis of the inhibition of cystathionine γ‐lyase from Toxoplasma gondii by propargylglycine and cysteine |
title | Structural basis of the inhibition of cystathionine γ‐lyase from Toxoplasma gondii by propargylglycine and cysteine |
title_full | Structural basis of the inhibition of cystathionine γ‐lyase from Toxoplasma gondii by propargylglycine and cysteine |
title_fullStr | Structural basis of the inhibition of cystathionine γ‐lyase from Toxoplasma gondii by propargylglycine and cysteine |
title_full_unstemmed | Structural basis of the inhibition of cystathionine γ‐lyase from Toxoplasma gondii by propargylglycine and cysteine |
title_short | Structural basis of the inhibition of cystathionine γ‐lyase from Toxoplasma gondii by propargylglycine and cysteine |
title_sort | structural basis of the inhibition of cystathionine γ‐lyase from toxoplasma gondii by propargylglycine and cysteine |
topic | Full‐length Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053738/ https://www.ncbi.nlm.nih.gov/pubmed/36883335 http://dx.doi.org/10.1002/pro.4619 |
work_keys_str_mv | AT fernandezrodriguezcarmen structuralbasisoftheinhibitionofcystathionineglyasefromtoxoplasmagondiibypropargylglycineandcysteine AT contercarolina structuralbasisoftheinhibitionofcystathionineglyasefromtoxoplasmagondiibypropargylglycineandcysteine AT oyenarteiker structuralbasisoftheinhibitionofcystathionineglyasefromtoxoplasmagondiibypropargylglycineandcysteine AT favrettofilippo structuralbasisoftheinhibitionofcystathionineglyasefromtoxoplasmagondiibypropargylglycineandcysteine AT quintanaiban structuralbasisoftheinhibitionofcystathionineglyasefromtoxoplasmagondiibypropargylglycineandcysteine AT martinezchantarmarialuz structuralbasisoftheinhibitionofcystathionineglyasefromtoxoplasmagondiibypropargylglycineandcysteine AT astegnoalessandra structuralbasisoftheinhibitionofcystathionineglyasefromtoxoplasmagondiibypropargylglycineandcysteine AT martinezcruzluisalfonso structuralbasisoftheinhibitionofcystathionineglyasefromtoxoplasmagondiibypropargylglycineandcysteine |