Cargando…
Isolation of Bioactive Metabolites from Soil Derived Fungus-Aspergillus fumigatus
Fungi produce numerous secondary metabolites with intriguing biological properties for the health, industrial, and agricultural sectors. Herein, we report the high-yield isolation of phenolic natural products, N-formyl-4-hydroxyphenyl-acetamide 1 (~117 mg/L) and atraric acid 2 (~18 mg/L), from the e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053833/ https://www.ncbi.nlm.nih.gov/pubmed/36985164 http://dx.doi.org/10.3390/microorganisms11030590 |
Sumario: | Fungi produce numerous secondary metabolites with intriguing biological properties for the health, industrial, and agricultural sectors. Herein, we report the high-yield isolation of phenolic natural products, N-formyl-4-hydroxyphenyl-acetamide 1 (~117 mg/L) and atraric acid 2 (~18 mg/L), from the ethyl acetate extract of the soil-derived fungus, Aspergillus fumigatus. The structures of compounds 1 and 2 were elucidated through the detailed spectroscopic analysis of NMR and LCMS data. These compounds were assayed for their antimicrobial activities. It was observed that compounds 1 and 2 exhibited strong inhibition against a series of fungal strains but only weak antibacterial properties against multi-drug-resistant strains. More significantly, this is the first known instance of the isolation of atraric acid 2 from a non-lichen fungal strain. We suggest the optimization of this fungal strain may exhibit elevated production of compounds 1 and 2, potentially rendering it a valuable source for the industrial-scale production of these natural antimicrobial compounds. Further investigation is necessary to establish the veracity of this hypothesis. |
---|