Cargando…
Application Research on Nb Microalloying of High-Carbon Pearlite Bridge Cable Wire Rods
The application of Nb microalloying to high-carbon pearlite bridge cable wire rod steel has always been controversial, especially in the actual production process, which will be affected by the cooling rate, holding temperature and final bonding temperature. In this paper, the experimental character...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053835/ https://www.ncbi.nlm.nih.gov/pubmed/36984041 http://dx.doi.org/10.3390/ma16062160 |
Sumario: | The application of Nb microalloying to high-carbon pearlite bridge cable wire rod steel has always been controversial, especially in the actual production process, which will be affected by the cooling rate, holding temperature and final bonding temperature. In this paper, the experimental characterization, finite element simulation and phase diagram calculation of the test steel were carried out, then the microstructure and properties of different parts of Nb microalloying of bridge cable wire rods were compared and analyzed. The phase transition interval of pearlite during the water-cooling process of bridge cable wire rods is increased due to the refinement of austenite grains, and the significant increase in the end temperature of the phase transition makes the average interlamellar spacing of pearlite increase. The cooling rate of different parts of bridge cable wire rods simulated by Abaqus has little difference. At the same time, Nb microalloying effectively increases the proportion of low-angle grain boundaries, so that the overall average misorientation representing the surface defects is reduced. This helps to reduce the surface energy and increase the stability of the microstructure. Combined with the mechanical properties of microtensile rods, it is found that the grain refinement effect of Nb is greater than that of coarsening interlamellar spacing during hot rolling deformation in actual production, which makes the tensile strength at the 1/4 section increase significantly. The overall tensile strength and area shrinkage of the steel wire have also been effectively improved. |
---|