Cargando…

Fast Degradation of Azo Dyes by In Situ Mg-Zn-Ca-Sr Metallic Glass Matrix Composite

Mg-based metallic glass (MG) has attracted extensive attention in the field of wastewater treatment due to its high decolorization rate in degrading azo dyes. However, the azo dye degradation rate of Mg-based MGs is strongly dependent on the particle size. Improving the intrinsic degradation efficie...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Rui, Wang, Gaojiong, Wang, Xin, Yang, Wei, Qi, Yumin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053960/
https://www.ncbi.nlm.nih.gov/pubmed/36984083
http://dx.doi.org/10.3390/ma16062201
Descripción
Sumario:Mg-based metallic glass (MG) has attracted extensive attention in the field of wastewater treatment due to its high decolorization rate in degrading azo dyes. However, the azo dye degradation rate of Mg-based MGs is strongly dependent on the particle size. Improving the intrinsic degradation efficiency using large particles is of great interest for future applications. In this work, in-situ metallic glass matrix composites (MGMCs) with high Mg content were successfully prepared by melt spinning. It is found that when the Mg content is 79–82%, the as-spun sample shows typical glassy characteristics. The SEM and XRD tests confirm that the as-spun sample is composed of α-Mg dendrite, multiple Mg-Zn intermetallic particles and an MG matrix. The degradation experiment using Direct Blue 6 and a 500 μm particle sample demonstrate that the Mg(82)Zn(14)Ca(3)Sr(1) MGMC sample degrades azo dyes faster than typical Mg-Zn-Ca MG alloy. It can be attributed to the galvanic cell effect on the α-Mg/MG interface, which reduces the waste of active Mg atoms in the MG matrix according to the corrosion protection mechanism by the α-Mg anode sacrifice. This result provides a new perspective and insight into the design of azo dye degradation alloys and the understanding of degradation mechanisms.