Cargando…

Real-Time Fire Smoke Detection Method Combining a Self-Attention Mechanism and Radial Multi-Scale Feature Connection

Fire remains a pressing issue that requires urgent attention. Due to its uncontrollable and unpredictable nature, it can easily trigger chain reactions and increase the difficulty of extinguishing, posing a significant threat to people’s lives and property. The effectiveness of traditional photoelec...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Chuan, Zheng, Anqi, Wu, Zhaoying, Tong, Changqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054114/
https://www.ncbi.nlm.nih.gov/pubmed/36992068
http://dx.doi.org/10.3390/s23063358
Descripción
Sumario:Fire remains a pressing issue that requires urgent attention. Due to its uncontrollable and unpredictable nature, it can easily trigger chain reactions and increase the difficulty of extinguishing, posing a significant threat to people’s lives and property. The effectiveness of traditional photoelectric- or ionization-based detectors is inhibited when detecting fire smoke due to the variable shape, characteristics, and scale of the detected objects and the small size of the fire source in the early stages. Additionally, the uneven distribution of fire and smoke and the complexity and variety of the surroundings in which they occur contribute to inconspicuous pixel-level-based feature information, making identification difficult. We propose a real-time fire smoke detection algorithm based on multi-scale feature information and an attention mechanism. Firstly, the feature information layers extracted from the network are fused into a radial connection to enhance the semantic and location information of the features. Secondly, to address the challenge of recognizing harsh fire sources, we designed a permutation self-attention mechanism to concentrate on features in channel and spatial directions to gather contextual information as accurately as possible. Thirdly, we constructed a new feature extraction module to increase the detection efficiency of the network while retaining feature information. Finally, we propose a cross-grid sample matching approach and a weighted decay loss function to handle the issue of imbalanced samples. Our model achieves the best detection results compared to standard detection methods using a handcrafted fire smoke detection dataset, with [Formula: see text] reaching 62.5%, [Formula: see text] reaching 58.5%, and FPS reaching 113.6.