Cargando…

Chemical Composition, Antibacterial Activity and In Vitro Anticancer Evaluation of Ochradenus baccatus Methanolic Extract

Background and Objectives: Ochradenus baccatus belongs to the family Resedaceae. It is widely spread in Saudi Arabia and other countries in Southwest Asia. O. baccatus is extensively used in traditional medicine as an anti-inflammatory and antibacterial agent, in addition to being a vital source of...

Descripción completa

Detalles Bibliográficos
Autores principales: Khojali, Weam M. A., Hussein, Weiam, Bin Break, Mohammed Khaled, Alafnan, Ahmed, Huwaimel, Bader, Khalifa, Nasrin E., Badulla, Wafa F. S., Alshammari, Raghad Abdulkarem, Alshammari, Lama Khalid, Alshammari, Rehab Aladham Raji, Albarak, Sara Mohsen, Alrkad, Enas Hmdan, Mahboob, Tooba, Alshammari, Hisham
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054464/
https://www.ncbi.nlm.nih.gov/pubmed/36984547
http://dx.doi.org/10.3390/medicina59030546
Descripción
Sumario:Background and Objectives: Ochradenus baccatus belongs to the family Resedaceae. It is widely spread in Saudi Arabia and other countries in Southwest Asia. O. baccatus is extensively used in traditional medicine as an anti-inflammatory and antibacterial agent, in addition to being a vital source of food for certain desert animal species. The aim of the present study was to investigate the chemical composition and antibacterial/anticancer activities of O. baccatus methanolic extracts collected from Hail, Saudi Arabia. Materials and Methods: The O. baccatus extracts were obtained by macerating the crude powder in methanol, followed by filtration and evaporation. Liquid chromatography–mass spectrometry (LC-MS) was used to analyze the methanolic extracts’ chemical constituents. Broth microdilution assay for minimum inhibitory concentration (MIC) determination was used to assess antimicrobial activity, while the extracts’ anticancer potential was assessed by sulforhodamine B Assay (SRB) assay. Results: The results of the antibacterial assay showed that the methanolic extracts from the roots and branches possessed varying degrees of activity against particular bacterial strains, with the highest activity being exerted by the branches’ extract against Escherichia coli and Salmonella typhimurium (St), demonstrating MIC values of 15.6 µg/mL and 20 µg/mL, respectively. Furthermore, the SRB cell viability assay revealed that only the branches’ extract inhibited the growth of A549 cancer cells, with an IC(50) value of 86.19 µg/mL. The LC-MS analysis of the methanolic extracts from the plant’s roots and branches was then conducted, resulting in the identification of 8 and 13 major chemical constituents, respectively. Azelaic acid, β-amyrin, and phytanic acid are some of the bioactive compounds that were detected in the extracts via LC-MS, and they are thought to be responsible for the observed antibacterial/anticancer activity of O. baccatus methanolic extracts. Conclusions: This study confirmed the antibacterial/anticancer potential of O. baccatus methanolic extracts and analyzed their phytochemical constituents. Further isolation and biological screening are warranted to understand the therapeutic potential of O. baccatus.