Cargando…

Molecular Anatomy of the EML4-ALK Fusion Protein for the Development of Novel Anticancer Drugs

The EML4 (echinoderm microtubule-associated protein-like 4)-ALK (anaplastic lymphoma kinase) fusion gene in non-small-cell lung cancer (NSCLC) was first identified in 2007. As the EML4-ALK fusion protein promotes carcinogenesis in lung cells, much attention has been paid to it, leading to the develo...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheon, So Yeong, Kwon, Sunghark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054655/
https://www.ncbi.nlm.nih.gov/pubmed/36982897
http://dx.doi.org/10.3390/ijms24065821
Descripción
Sumario:The EML4 (echinoderm microtubule-associated protein-like 4)-ALK (anaplastic lymphoma kinase) fusion gene in non-small-cell lung cancer (NSCLC) was first identified in 2007. As the EML4-ALK fusion protein promotes carcinogenesis in lung cells, much attention has been paid to it, leading to the development of therapies for patients with NSCLC. These therapies include ALK tyrosine kinase inhibitors and heat shock protein 90 inhibitors. However, detailed information on the entire structure and function of the EML4-ALK protein remains deficient, and there are many obstacles to overcome in the development of novel anticancer agents. In this review, we describe the respective partial structures of EML4 and ALK that are known to date. In addition to their structures, noteworthy structural features and launched inhibitors of the EML4-ALK protein are summarized. Furthermore, based on the structural features and inhibitor-binding modes, we discuss strategies for the development of novel inhibitors targeting the EML4-ALK protein.