Cargando…

CNN-Based Fault Detection of Scan Matching for Accurate SLAM in Dynamic Environments

This paper proposes a method for CNN-based fault detection of the scan-matching algorithm for accurate SLAM in dynamic environments. When there are dynamic objects in an environment, the environment that is detected by a LiDAR sensor changes. Thus, the scan matching of laser scans is likely to fail....

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Hyein, Lee, Heoncheol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054667/
https://www.ncbi.nlm.nih.gov/pubmed/36991651
http://dx.doi.org/10.3390/s23062940
Descripción
Sumario:This paper proposes a method for CNN-based fault detection of the scan-matching algorithm for accurate SLAM in dynamic environments. When there are dynamic objects in an environment, the environment that is detected by a LiDAR sensor changes. Thus, the scan matching of laser scans is likely to fail. Therefore, a more robust scan-matching algorithm to overcome the faults of scan matching is needed for 2D SLAM. The proposed method first receives raw scan data in an unknown environment and executes ICP (Iterative Closest Points) scan matching of laser scans from a 2D LiDAR. Then, the matched scans are converted into images, which are fed into a CNN model for its training to detect the faults of scan matching. Finally, the trained model detects the faults when new scan data are provided. The training and evaluation are performed in various dynamic environments, taking real-world scenarios into account. Experimental results showed that the proposed method accurately detects the faults of scan matching in every experimental environment.