Cargando…
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
The preservation of image details in the defogging process is still one key challenge in the field of deep learning. The network uses the generation of confrontation loss and cyclic consistency loss to ensure that the generated defog image is similar to the original image, but it cannot retain the d...
Autores principales: | Yan, Bingnan, Yang, Zhaozhao, Sun, Huizhu, Wang, Conghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054719/ https://www.ncbi.nlm.nih.gov/pubmed/36992005 http://dx.doi.org/10.3390/s23063294 |
Ejemplares similares
-
Unsupervised Dark-Channel Attention-Guided CycleGAN for Single-Image Dehazing
por: Chen, Jiahao, et al.
Publicado: (2020) -
Enhanced CycleGAN Network with Adaptive Dark Channel Prior for Unpaired Single-Image Dehazing
por: Xu, Yijun, et al.
Publicado: (2023) -
CycleGAN for interpretable online EMT compensation
por: Krumb, Henry, et al.
Publicado: (2021) -
Comparative analysis of CycleGAN and AttentionGAN on face aging application
por: Sharma, Neha, et al.
Publicado: (2022) -
Effective Immunohistochemistry Pathology Microscopy Image Generation Using CycleGAN
por: Xu, Zidui, et al.
Publicado: (2020)