Cargando…
A Multi-Label Detection Deep Learning Model with Attention-Guided Image Enhancement for Retinal Images
At present, multi-disease fundus image classification tasks still have the problems of small data volumes, uneven distributions, and low classification accuracy. In order to solve the problem of large data demand of deep learning models, a multi-disease fundus image classification ensemble model bas...
Autores principales: | Li, Zhenwei, Xu, Mengying, Yang, Xiaoli, Han, Yanqi, Wang, Jiawen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054796/ https://www.ncbi.nlm.nih.gov/pubmed/36985112 http://dx.doi.org/10.3390/mi14030705 |
Ejemplares similares
-
Multi-Label Fundus Image Classification Using Attention Mechanisms and Feature Fusion
por: Li, Zhenwei, et al.
Publicado: (2022) -
Multi-Fundus Diseases Classification Using Retinal Optical Coherence Tomography Images with Swin Transformer V2
por: Li, Zhenwei, et al.
Publicado: (2023) -
Blood Vessel Segmentation of Retinal Image Based on Dense-U-Net Network
por: Li, Zhenwei, et al.
Publicado: (2021) -
Retinal Lesion Detection With Deep Learning Using Image Patches
por: Lam, Carson, et al.
Publicado: (2018) -
A deep learning-based framework for retinal fundus image enhancement
por: Lee, Kang Geon, et al.
Publicado: (2023)