Cargando…
Metabolic Profile of Whole Unstimulated Saliva in Patients with Sjögren’s Syndrome
Primary Sjögren’s Syndrome (pSS) is a multi-system autoimmune disease that involves the exocrine glands. Lymphocytes infiltrate the gland tissue, leading to anatomical modification and hypofunction. Even if the prognosis of pSS is favorable, quality of life is typically reduced due to the diverse ma...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054882/ https://www.ncbi.nlm.nih.gov/pubmed/36984788 http://dx.doi.org/10.3390/metabo13030348 |
Sumario: | Primary Sjögren’s Syndrome (pSS) is a multi-system autoimmune disease that involves the exocrine glands. Lymphocytes infiltrate the gland tissue, leading to anatomical modification and hypofunction. Even if the prognosis of pSS is favorable, quality of life is typically reduced due to the diverse manifestations of the disease. The aim of this study is to compare the salivary metabolomes of pSS with healthy controls (HCs). Seven cases were selected from a cohort of pSS patients, and six age- and sex-matched HCs were recruited from a cohort of volunteers. Whole unstimulated saliva was collected for NMR analysis. Our metabolomic analysis focused on 360 ms total echo 1D (1)H NMR CPMG spectra. Metabolites detected with CPMG NMR spectra were assigned through 2D NMR spectra (COSY, TOCSY, and HSQC). About 50 metabolites were detected and assigned. Unsupervised exploratory PCA returned partial clustering, and PLS-DA improved the separation between pSS and HCs, highlighting a pool of metabolites distinctly describing each group. Despite the limited number of samples, the presented preliminary data are promising. PLS-DA indicated well-defined group separation, suggesting that the application of (1)H-NMR metabolomics is suitable for the study of pSS. |
---|