Cargando…
An interpretable ML model to characterize patient-specific HLA-I antigen presentation
Personalized immunotherapy holds the promise of revolutionizing cancer prevention and treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has been challenging due to a lack of patient-specific antigen presentation models. Here, we present epiNB, a white-box, p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054957/ https://www.ncbi.nlm.nih.gov/pubmed/36993682 http://dx.doi.org/10.1101/2023.03.12.532264 |
Sumario: | Personalized immunotherapy holds the promise of revolutionizing cancer prevention and treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has been challenging due to a lack of patient-specific antigen presentation models. Here, we present epiNB, a white-box, positive-example-only, semi-supervised method based on Naïve Bayes formulation, with information content-based feature selection, to achieve accurate modeling using Mass Spectrometry data eluted from mono-allelic cell lines and patient-derived cell lines. In addition to achieving state-of-the-art accuracy, epiNB yields novel insights into the structural properties, such as interactions of peptide positions, that appear important for modeling personalized, tumor-specific antigen presentation. epiNB uses substantially less parameters than neural networks, does not require hyperparameter tweaking and can efficiently train and run on our web portal (https://epinbweb.streamlit.app/) or a regular PC/laptop, making it easily applicable in translational settings. |
---|