Cargando…
An interpretable ML model to characterize patient-specific HLA-I antigen presentation
Personalized immunotherapy holds the promise of revolutionizing cancer prevention and treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has been challenging due to a lack of patient-specific antigen presentation models. Here, we present epiNB, a white-box, p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054957/ https://www.ncbi.nlm.nih.gov/pubmed/36993682 http://dx.doi.org/10.1101/2023.03.12.532264 |
_version_ | 1785015795774914560 |
---|---|
author | Liang, Shaoheng Jiang, Xianli Chiu, Yulun Xu, Haodong Kim, Kun Hee Lizee, Gregory Chen, Ken |
author_facet | Liang, Shaoheng Jiang, Xianli Chiu, Yulun Xu, Haodong Kim, Kun Hee Lizee, Gregory Chen, Ken |
author_sort | Liang, Shaoheng |
collection | PubMed |
description | Personalized immunotherapy holds the promise of revolutionizing cancer prevention and treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has been challenging due to a lack of patient-specific antigen presentation models. Here, we present epiNB, a white-box, positive-example-only, semi-supervised method based on Naïve Bayes formulation, with information content-based feature selection, to achieve accurate modeling using Mass Spectrometry data eluted from mono-allelic cell lines and patient-derived cell lines. In addition to achieving state-of-the-art accuracy, epiNB yields novel insights into the structural properties, such as interactions of peptide positions, that appear important for modeling personalized, tumor-specific antigen presentation. epiNB uses substantially less parameters than neural networks, does not require hyperparameter tweaking and can efficiently train and run on our web portal (https://epinbweb.streamlit.app/) or a regular PC/laptop, making it easily applicable in translational settings. |
format | Online Article Text |
id | pubmed-10054957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-100549572023-03-30 An interpretable ML model to characterize patient-specific HLA-I antigen presentation Liang, Shaoheng Jiang, Xianli Chiu, Yulun Xu, Haodong Kim, Kun Hee Lizee, Gregory Chen, Ken bioRxiv Article Personalized immunotherapy holds the promise of revolutionizing cancer prevention and treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has been challenging due to a lack of patient-specific antigen presentation models. Here, we present epiNB, a white-box, positive-example-only, semi-supervised method based on Naïve Bayes formulation, with information content-based feature selection, to achieve accurate modeling using Mass Spectrometry data eluted from mono-allelic cell lines and patient-derived cell lines. In addition to achieving state-of-the-art accuracy, epiNB yields novel insights into the structural properties, such as interactions of peptide positions, that appear important for modeling personalized, tumor-specific antigen presentation. epiNB uses substantially less parameters than neural networks, does not require hyperparameter tweaking and can efficiently train and run on our web portal (https://epinbweb.streamlit.app/) or a regular PC/laptop, making it easily applicable in translational settings. Cold Spring Harbor Laboratory 2023-03-13 /pmc/articles/PMC10054957/ /pubmed/36993682 http://dx.doi.org/10.1101/2023.03.12.532264 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Liang, Shaoheng Jiang, Xianli Chiu, Yulun Xu, Haodong Kim, Kun Hee Lizee, Gregory Chen, Ken An interpretable ML model to characterize patient-specific HLA-I antigen presentation |
title | An interpretable ML model to characterize patient-specific HLA-I antigen presentation |
title_full | An interpretable ML model to characterize patient-specific HLA-I antigen presentation |
title_fullStr | An interpretable ML model to characterize patient-specific HLA-I antigen presentation |
title_full_unstemmed | An interpretable ML model to characterize patient-specific HLA-I antigen presentation |
title_short | An interpretable ML model to characterize patient-specific HLA-I antigen presentation |
title_sort | interpretable ml model to characterize patient-specific hla-i antigen presentation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054957/ https://www.ncbi.nlm.nih.gov/pubmed/36993682 http://dx.doi.org/10.1101/2023.03.12.532264 |
work_keys_str_mv | AT liangshaoheng aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT jiangxianli aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT chiuyulun aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT xuhaodong aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT kimkunhee aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT lizeegregory aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT chenken aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT liangshaoheng interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT jiangxianli interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT chiuyulun interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT xuhaodong interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT kimkunhee interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT lizeegregory interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation AT chenken interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation |