Cargando…

An interpretable ML model to characterize patient-specific HLA-I antigen presentation

Personalized immunotherapy holds the promise of revolutionizing cancer prevention and treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has been challenging due to a lack of patient-specific antigen presentation models. Here, we present epiNB, a white-box, p...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Shaoheng, Jiang, Xianli, Chiu, Yulun, Xu, Haodong, Kim, Kun Hee, Lizee, Gregory, Chen, Ken
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054957/
https://www.ncbi.nlm.nih.gov/pubmed/36993682
http://dx.doi.org/10.1101/2023.03.12.532264
_version_ 1785015795774914560
author Liang, Shaoheng
Jiang, Xianli
Chiu, Yulun
Xu, Haodong
Kim, Kun Hee
Lizee, Gregory
Chen, Ken
author_facet Liang, Shaoheng
Jiang, Xianli
Chiu, Yulun
Xu, Haodong
Kim, Kun Hee
Lizee, Gregory
Chen, Ken
author_sort Liang, Shaoheng
collection PubMed
description Personalized immunotherapy holds the promise of revolutionizing cancer prevention and treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has been challenging due to a lack of patient-specific antigen presentation models. Here, we present epiNB, a white-box, positive-example-only, semi-supervised method based on Naïve Bayes formulation, with information content-based feature selection, to achieve accurate modeling using Mass Spectrometry data eluted from mono-allelic cell lines and patient-derived cell lines. In addition to achieving state-of-the-art accuracy, epiNB yields novel insights into the structural properties, such as interactions of peptide positions, that appear important for modeling personalized, tumor-specific antigen presentation. epiNB uses substantially less parameters than neural networks, does not require hyperparameter tweaking and can efficiently train and run on our web portal (https://epinbweb.streamlit.app/) or a regular PC/laptop, making it easily applicable in translational settings.
format Online
Article
Text
id pubmed-10054957
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-100549572023-03-30 An interpretable ML model to characterize patient-specific HLA-I antigen presentation Liang, Shaoheng Jiang, Xianli Chiu, Yulun Xu, Haodong Kim, Kun Hee Lizee, Gregory Chen, Ken bioRxiv Article Personalized immunotherapy holds the promise of revolutionizing cancer prevention and treatment. However, selecting HLA-bound peptide targets that are specific to patient tumors has been challenging due to a lack of patient-specific antigen presentation models. Here, we present epiNB, a white-box, positive-example-only, semi-supervised method based on Naïve Bayes formulation, with information content-based feature selection, to achieve accurate modeling using Mass Spectrometry data eluted from mono-allelic cell lines and patient-derived cell lines. In addition to achieving state-of-the-art accuracy, epiNB yields novel insights into the structural properties, such as interactions of peptide positions, that appear important for modeling personalized, tumor-specific antigen presentation. epiNB uses substantially less parameters than neural networks, does not require hyperparameter tweaking and can efficiently train and run on our web portal (https://epinbweb.streamlit.app/) or a regular PC/laptop, making it easily applicable in translational settings. Cold Spring Harbor Laboratory 2023-03-13 /pmc/articles/PMC10054957/ /pubmed/36993682 http://dx.doi.org/10.1101/2023.03.12.532264 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Liang, Shaoheng
Jiang, Xianli
Chiu, Yulun
Xu, Haodong
Kim, Kun Hee
Lizee, Gregory
Chen, Ken
An interpretable ML model to characterize patient-specific HLA-I antigen presentation
title An interpretable ML model to characterize patient-specific HLA-I antigen presentation
title_full An interpretable ML model to characterize patient-specific HLA-I antigen presentation
title_fullStr An interpretable ML model to characterize patient-specific HLA-I antigen presentation
title_full_unstemmed An interpretable ML model to characterize patient-specific HLA-I antigen presentation
title_short An interpretable ML model to characterize patient-specific HLA-I antigen presentation
title_sort interpretable ml model to characterize patient-specific hla-i antigen presentation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054957/
https://www.ncbi.nlm.nih.gov/pubmed/36993682
http://dx.doi.org/10.1101/2023.03.12.532264
work_keys_str_mv AT liangshaoheng aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT jiangxianli aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT chiuyulun aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT xuhaodong aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT kimkunhee aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT lizeegregory aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT chenken aninterpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT liangshaoheng interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT jiangxianli interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT chiuyulun interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT xuhaodong interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT kimkunhee interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT lizeegregory interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation
AT chenken interpretablemlmodeltocharacterizepatientspecifichlaiantigenpresentation