Cargando…
Predicting metabolic response to dietary intervention using deep learning
Due to highly personalized biological and lifestyle characteristics, different individuals may have different metabolic responses to specific foods and nutrients. In particular, the gut microbiota, a collection of trillions of microorganisms living in our gastrointestinal tract, is highly personaliz...
Autores principales: | Wang, Tong, Holscher, Hannah D., Maslov, Sergei, Hu, Frank B., Weiss, Scott T., Liu, Yang-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054958/ https://www.ncbi.nlm.nih.gov/pubmed/36993761 http://dx.doi.org/10.1101/2023.03.14.532589 |
Ejemplares similares
-
FUN-PROSE: A deep learning approach to predict condition-specific gene expression in fungi
por: Nambiar, Ananthan, et al.
Publicado: (2023) -
Predicting tumor cell line response to drug pairs with deep learning
por: Xia, Fangfang, et al.
Publicado: (2018) -
Dietary fiber and prebiotics and the gastrointestinal microbiota
por: Holscher, Hannah D.
Publicado: (2017) -
Etiology of Metabolic Syndrome and Dietary Intervention
por: Xu, Hang, et al.
Publicado: (2018) -
Ecology-guided prediction of cross-feeding interactions in the human gut microbiome
por: Goyal, Akshit, et al.
Publicado: (2021)