Cargando…
Leveraging gene correlations in single cell transcriptomic data
BACKGROUND: Many approaches have been developed to overcome technical noise in single cell RNA-sequencing (scRNAseq). As researchers dig deeper into data—looking for rare cell types, subtleties of cell states, and details of gene regulatory networks—there is a growing need for algorithms with contro...
Autores principales: | Silkwood, Kai, Dollinger, Emmanuel, Gervin, Josh, Atwood, Scott, Nie, Qing, Lander, Arthur D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055147/ https://www.ncbi.nlm.nih.gov/pubmed/36993765 http://dx.doi.org/10.1101/2023.03.14.532643 |
Ejemplares similares
-
Machine Learning of Single Cell Transcriptomic Data From anti-PD-1 Responders and Non-responders Reveals Distinct Resistance Mechanisms in Skin Cancers and PDAC
por: Liu, Ryan, et al.
Publicado: (2022) -
Divergent Resistance Mechanisms to Immunotherapy Explain Responses in Different Skin Cancers
por: Dollinger, Emmanuel, et al.
Publicado: (2020) -
Leveraging Surveillance and Evidence: Preventing Adverse Childhood Experiences Through Data to Action
por: Guinn, Angie S., et al.
Publicado: (2022) -
Single-cell transcriptomics of human-skin-equivalent organoids
por: Stabell, Adam R., et al.
Publicado: (2023) -
spliceJAC: transition genes and state‐specific gene regulation from single‐cell transcriptome data
por: Bocci, Federico, et al.
Publicado: (2022)