Cargando…
Valence-partitioned learning signals drive choice behavior and phenomenal subjective experience in humans
How the human brain generates conscious phenomenal experience is a fundamental problem. In particular, it is unknown how variable and dynamic changes in subjective affect are driven by interactions with objective phenomena. We hypothesize a neurocomputational mechanism that generates valence-specifi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055186/ https://www.ncbi.nlm.nih.gov/pubmed/36993384 http://dx.doi.org/10.1101/2023.03.17.533213 |
Sumario: | How the human brain generates conscious phenomenal experience is a fundamental problem. In particular, it is unknown how variable and dynamic changes in subjective affect are driven by interactions with objective phenomena. We hypothesize a neurocomputational mechanism that generates valence-specific learning signals associated with ‘what it is like’ to be rewarded or punished. Our hypothesized model maintains a partition between appetitive and aversive information while generating independent and parallel reward and punishment learning signals. This valence-partitioned reinforcement learning (VPRL) model and its associated learning signals are shown to predict dynamic changes in 1) human choice behavior, 2) phenomenal subjective experience, and 3) BOLD-imaging responses that implicate a network of regions that process appetitive and aversive information that converge on the ventral striatum and ventromedial prefrontal cortex during moments of introspection. Our results demonstrate the utility of valence-partitioned reinforcement learning as a neurocomputational basis for investigating mechanisms that may drive conscious experience. |
---|