Cargando…
A sex-specific switch in a single glial cell patterns the apical extracellular matrix
Apical extracellular matrix (aECM) constitutes the interface between every tissue and the outside world. It is patterned into diverse tissue-specific structures through unknown mechanisms. Here, we show that a male-specific genetic switch in a single C. elegans glial cell patterns the aECM into a ~2...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055199/ https://www.ncbi.nlm.nih.gov/pubmed/36993293 http://dx.doi.org/10.1101/2023.03.17.533199 |
Sumario: | Apical extracellular matrix (aECM) constitutes the interface between every tissue and the outside world. It is patterned into diverse tissue-specific structures through unknown mechanisms. Here, we show that a male-specific genetic switch in a single C. elegans glial cell patterns the aECM into a ~200 nm pore, allowing a male sensory neuron to access the environment. We find that this glial sex difference is controlled by factors shared with neurons (mab-3, lep-2, lep-5) as well as previously unidentified regulators whose effects may be glia-specific (nfya-1, bed-3, jmjd-3.1). The switch results in male-specific expression of a Hedgehog-related protein, GRL-18, that we discover localizes to transient nanoscale rings at sites of aECM pore formation. Blocking male-specific gene expression in glia prevents pore formation, whereas forcing male-specific expression induces an ectopic pore. Thus, a switch in gene expression in a single cell is necessary and sufficient to pattern aECM into a specific structure. |
---|