Cargando…

Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade

The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented(1). While mitochondrial DNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahmood, Mahnoor, Liu, Eric Minwei, Shergold, Amy L., Tolla, Elisabetta, Tait-Mulder, Jacqueline, Huerta Uribe, Alejandro, Shokry, Engy, Young, Alex L., Lilla, Sergio, Kim, Minsoo, Park, Tricia, Manchon, J.L., Rodríguez-Antona, Crístina, Walters, Rowan C., Springett, Roger J., Blaza, James N., Zanivan, Sara, Sumpton, David, Roberts, Edward W., Reznik, Ed, Gammage, Payam A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055208/
https://www.ncbi.nlm.nih.gov/pubmed/36993533
http://dx.doi.org/10.1101/2023.03.21.533091
_version_ 1785015838628118528
author Mahmood, Mahnoor
Liu, Eric Minwei
Shergold, Amy L.
Tolla, Elisabetta
Tait-Mulder, Jacqueline
Huerta Uribe, Alejandro
Shokry, Engy
Young, Alex L.
Lilla, Sergio
Kim, Minsoo
Park, Tricia
Manchon, J.L.
Rodríguez-Antona, Crístina
Walters, Rowan C.
Springett, Roger J.
Blaza, James N.
Zanivan, Sara
Sumpton, David
Roberts, Edward W.
Reznik, Ed
Gammage, Payam A.
author_facet Mahmood, Mahnoor
Liu, Eric Minwei
Shergold, Amy L.
Tolla, Elisabetta
Tait-Mulder, Jacqueline
Huerta Uribe, Alejandro
Shokry, Engy
Young, Alex L.
Lilla, Sergio
Kim, Minsoo
Park, Tricia
Manchon, J.L.
Rodríguez-Antona, Crístina
Walters, Rowan C.
Springett, Roger J.
Blaza, James N.
Zanivan, Sara
Sumpton, David
Roberts, Edward W.
Reznik, Ed
Gammage, Payam A.
author_sort Mahmood, Mahnoor
collection PubMed
description The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented(1). While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages(1–3), whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology(4) we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti-tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.
format Online
Article
Text
id pubmed-10055208
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-100552082023-03-30 Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade Mahmood, Mahnoor Liu, Eric Minwei Shergold, Amy L. Tolla, Elisabetta Tait-Mulder, Jacqueline Huerta Uribe, Alejandro Shokry, Engy Young, Alex L. Lilla, Sergio Kim, Minsoo Park, Tricia Manchon, J.L. Rodríguez-Antona, Crístina Walters, Rowan C. Springett, Roger J. Blaza, James N. Zanivan, Sara Sumpton, David Roberts, Edward W. Reznik, Ed Gammage, Payam A. bioRxiv Article The mitochondrial genome encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutation in the cancer genome, with truncating mutations in respiratory complex I genes being most over-represented(1). While mitochondrial DNA (mtDNA) mutations have been associated with both improved and worsened prognoses in several tumour lineages(1–3), whether these mutations are drivers or exert any functional effect on tumour biology remains controversial. Here we discovered that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology(4) we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux without major effects on oxygen consumption, driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment in both mice and humans, promoting an anti-tumour immune response characterised by loss of resident neutrophils. This subsequently sensitised tumours bearing high mtDNA mutant heteroplasmy to immune checkpoint blockade, with phenocopy of key metabolic changes being sufficient to mediate this effect. Strikingly, patient lesions bearing >50% mtDNA mutation heteroplasmy also demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification. Cold Spring Harbor Laboratory 2023-03-23 /pmc/articles/PMC10055208/ /pubmed/36993533 http://dx.doi.org/10.1101/2023.03.21.533091 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Mahmood, Mahnoor
Liu, Eric Minwei
Shergold, Amy L.
Tolla, Elisabetta
Tait-Mulder, Jacqueline
Huerta Uribe, Alejandro
Shokry, Engy
Young, Alex L.
Lilla, Sergio
Kim, Minsoo
Park, Tricia
Manchon, J.L.
Rodríguez-Antona, Crístina
Walters, Rowan C.
Springett, Roger J.
Blaza, James N.
Zanivan, Sara
Sumpton, David
Roberts, Edward W.
Reznik, Ed
Gammage, Payam A.
Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade
title Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade
title_full Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade
title_fullStr Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade
title_full_unstemmed Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade
title_short Tumour mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade
title_sort tumour mitochondrial dna mutations drive aerobic glycolysis to enhance checkpoint blockade
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055208/
https://www.ncbi.nlm.nih.gov/pubmed/36993533
http://dx.doi.org/10.1101/2023.03.21.533091
work_keys_str_mv AT mahmoodmahnoor tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT liuericminwei tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT shergoldamyl tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT tollaelisabetta tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT taitmulderjacqueline tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT huertauribealejandro tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT shokryengy tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT youngalexl tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT lillasergio tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT kimminsoo tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT parktricia tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT manchonjl tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT rodriguezantonacristina tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT waltersrowanc tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT springettrogerj tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT blazajamesn tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT zanivansara tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT sumptondavid tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT robertsedwardw tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT rezniked tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade
AT gammagepayama tumourmitochondrialdnamutationsdriveaerobicglycolysistoenhancecheckpointblockade