Cargando…
Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo
Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engine...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055305/ https://www.ncbi.nlm.nih.gov/pubmed/36993169 http://dx.doi.org/10.1101/2023.03.20.533459 |
_version_ | 1785015853468614656 |
---|---|
author | Zhang, Han Kelly, Karen Lee, Jonathan Echeverria, Dimas Cooper, David Panwala, Rebecca Chen, Zexiang Gaston, Nicholas Newby, Gregory A. Xie, Jun Liu, David R. Gao, Guangping Wolfe, Scot A. Khvorova, Anastasia Watts, Jonathan K. Sontheimer, Erik J. |
author_facet | Zhang, Han Kelly, Karen Lee, Jonathan Echeverria, Dimas Cooper, David Panwala, Rebecca Chen, Zexiang Gaston, Nicholas Newby, Gregory A. Xie, Jun Liu, David R. Gao, Guangping Wolfe, Scot A. Khvorova, Anastasia Watts, Jonathan K. Sontheimer, Erik J. |
author_sort | Zhang, Han |
collection | PubMed |
description | Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a “protecting oligo”), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation. |
format | Online Article Text |
id | pubmed-10055305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-100553052023-03-30 Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo Zhang, Han Kelly, Karen Lee, Jonathan Echeverria, Dimas Cooper, David Panwala, Rebecca Chen, Zexiang Gaston, Nicholas Newby, Gregory A. Xie, Jun Liu, David R. Gao, Guangping Wolfe, Scot A. Khvorova, Anastasia Watts, Jonathan K. Sontheimer, Erik J. bioRxiv Article Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a “protecting oligo”), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation. Cold Spring Harbor Laboratory 2023-03-23 /pmc/articles/PMC10055305/ /pubmed/36993169 http://dx.doi.org/10.1101/2023.03.20.533459 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Zhang, Han Kelly, Karen Lee, Jonathan Echeverria, Dimas Cooper, David Panwala, Rebecca Chen, Zexiang Gaston, Nicholas Newby, Gregory A. Xie, Jun Liu, David R. Gao, Guangping Wolfe, Scot A. Khvorova, Anastasia Watts, Jonathan K. Sontheimer, Erik J. Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo |
title | Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo |
title_full | Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo |
title_fullStr | Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo |
title_full_unstemmed | Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo |
title_short | Self-delivering CRISPR RNAs for AAV Co-delivery and Genome Editing in vivo |
title_sort | self-delivering crispr rnas for aav co-delivery and genome editing in vivo |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055305/ https://www.ncbi.nlm.nih.gov/pubmed/36993169 http://dx.doi.org/10.1101/2023.03.20.533459 |
work_keys_str_mv | AT zhanghan selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT kellykaren selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT leejonathan selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT echeverriadimas selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT cooperdavid selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT panwalarebecca selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT chenzexiang selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT gastonnicholas selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT newbygregorya selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT xiejun selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT liudavidr selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT gaoguangping selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT wolfescota selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT khvorovaanastasia selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT wattsjonathank selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo AT sontheimererikj selfdeliveringcrisprrnasforaavcodeliveryandgenomeeditinginvivo |