Cargando…
Supervised learning of high-confidence phenotypic subpopulations from single-cell data
Accurately identifying phenotype-relevant cell subsets from heterogeneous cell populations is crucial for delineating the underlying mechanisms driving biological or clinical phenotypes. Here, by deploying a learning with rejection strategy, we developed a novel supervised learning framework called...
Autores principales: | Ren, Tao, Chen, Canping, Danilov, Alexey V., Liu, Susan, Guan, Xiangnan, Du, Shunyi, Wu, Xiwei, Sherman, Mara H., Spellman, Paul T., Coussens, Lisa M., Adey, Andrew C., Mills, Gordon B., Wu, Ling-Yun, Xia, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055361/ https://www.ncbi.nlm.nih.gov/pubmed/36993424 http://dx.doi.org/10.1101/2023.03.23.533712 |
Ejemplares similares
-
Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data
por: Sun, Duanchen, et al.
Publicado: (2022) -
Chronic obstructive pulmonary disease subpopulations and phenotyping
por: Segal, Leopoldo N., et al.
Publicado: (2018) -
Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
por: Hirohata, Yasuhide, et al.
Publicado: (2023) -
Global certification of wild poliovirus eradication: insights from modelling hard-to-reach subpopulations and confidence about the absence of transmission
por: Duintjer Tebbens, Radboud J, et al.
Publicado: (2019) -
Phenotypic Analysis of Diseased Plant Leaves Using Supervised and Weakly Supervised Deep Learning
por: Zhou, Lei, et al.
Publicado: (2023)