Cargando…
Functional identification of language-responsive channels in individual participants in MEG investigations
Making meaningful inferences about the functional architecture of the language system requires the ability to refer to the same neural units across individuals and studies. Traditional brain imaging approaches align and average brains together in a common space. However, lateral frontal and temporal...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055362/ https://www.ncbi.nlm.nih.gov/pubmed/36993378 http://dx.doi.org/10.1101/2023.03.23.533424 |
_version_ | 1785015863218274304 |
---|---|
author | Bruffaerts, Rose Pongos, Alvince Shain, Cory Lipkin, Benjamin Siegelman, Matthew Wens, Vincent Sjøgård, Martin Pantazis, Dimitrios Blank, Idan Goldman, Serge De Tiège, Xavier Fedorenko, Evelina |
author_facet | Bruffaerts, Rose Pongos, Alvince Shain, Cory Lipkin, Benjamin Siegelman, Matthew Wens, Vincent Sjøgård, Martin Pantazis, Dimitrios Blank, Idan Goldman, Serge De Tiège, Xavier Fedorenko, Evelina |
author_sort | Bruffaerts, Rose |
collection | PubMed |
description | Making meaningful inferences about the functional architecture of the language system requires the ability to refer to the same neural units across individuals and studies. Traditional brain imaging approaches align and average brains together in a common space. However, lateral frontal and temporal cortex, where the language system resides, is characterized by high structural and functional inter-individual variability. This variability reduces the sensitivity and functional resolution of group-averaging analyses. This problem is compounded by the fact that language areas often lay in close proximity to regions of other large-scale networks with different functional profiles. A solution inspired by other fields of cognitive neuroscience (e.g., vision) is to identify language areas functionally in each individual brain using a ‘localizer’ task (e.g., a language comprehension task). This approach has proven productive in fMRI, yielding a number of discoveries about the language system, and has been successfully extended to intracranial recording investigations. Here, we apply this approach to MEG. Across two experiments (one in Dutch speakers, n=19; one in English speakers, n=23), we examined neural responses to the processing of sentences and a control condition (nonword sequences). We demonstrated that the neural response to language is spatially consistent at the individual level. The language-responsive sensors of interest were, as expected, less responsive to the nonwords condition. Clear inter-individual differences were present in the topography of the neural response to language, leading to greater sensitivity when the data were analyzed at the individual level compared to the group level. Thus, as in fMRI, functional localization yields benefits in MEG and thus opens the door to probing fine-grained distinctions in space and time in future MEG investigations of language processing. |
format | Online Article Text |
id | pubmed-10055362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-100553622023-03-30 Functional identification of language-responsive channels in individual participants in MEG investigations Bruffaerts, Rose Pongos, Alvince Shain, Cory Lipkin, Benjamin Siegelman, Matthew Wens, Vincent Sjøgård, Martin Pantazis, Dimitrios Blank, Idan Goldman, Serge De Tiège, Xavier Fedorenko, Evelina bioRxiv Article Making meaningful inferences about the functional architecture of the language system requires the ability to refer to the same neural units across individuals and studies. Traditional brain imaging approaches align and average brains together in a common space. However, lateral frontal and temporal cortex, where the language system resides, is characterized by high structural and functional inter-individual variability. This variability reduces the sensitivity and functional resolution of group-averaging analyses. This problem is compounded by the fact that language areas often lay in close proximity to regions of other large-scale networks with different functional profiles. A solution inspired by other fields of cognitive neuroscience (e.g., vision) is to identify language areas functionally in each individual brain using a ‘localizer’ task (e.g., a language comprehension task). This approach has proven productive in fMRI, yielding a number of discoveries about the language system, and has been successfully extended to intracranial recording investigations. Here, we apply this approach to MEG. Across two experiments (one in Dutch speakers, n=19; one in English speakers, n=23), we examined neural responses to the processing of sentences and a control condition (nonword sequences). We demonstrated that the neural response to language is spatially consistent at the individual level. The language-responsive sensors of interest were, as expected, less responsive to the nonwords condition. Clear inter-individual differences were present in the topography of the neural response to language, leading to greater sensitivity when the data were analyzed at the individual level compared to the group level. Thus, as in fMRI, functional localization yields benefits in MEG and thus opens the door to probing fine-grained distinctions in space and time in future MEG investigations of language processing. Cold Spring Harbor Laboratory 2023-03-23 /pmc/articles/PMC10055362/ /pubmed/36993378 http://dx.doi.org/10.1101/2023.03.23.533424 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Bruffaerts, Rose Pongos, Alvince Shain, Cory Lipkin, Benjamin Siegelman, Matthew Wens, Vincent Sjøgård, Martin Pantazis, Dimitrios Blank, Idan Goldman, Serge De Tiège, Xavier Fedorenko, Evelina Functional identification of language-responsive channels in individual participants in MEG investigations |
title | Functional identification of language-responsive channels in individual participants in MEG investigations |
title_full | Functional identification of language-responsive channels in individual participants in MEG investigations |
title_fullStr | Functional identification of language-responsive channels in individual participants in MEG investigations |
title_full_unstemmed | Functional identification of language-responsive channels in individual participants in MEG investigations |
title_short | Functional identification of language-responsive channels in individual participants in MEG investigations |
title_sort | functional identification of language-responsive channels in individual participants in meg investigations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055362/ https://www.ncbi.nlm.nih.gov/pubmed/36993378 http://dx.doi.org/10.1101/2023.03.23.533424 |
work_keys_str_mv | AT bruffaertsrose functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT pongosalvince functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT shaincory functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT lipkinbenjamin functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT siegelmanmatthew functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT wensvincent functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT sjøgardmartin functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT pantazisdimitrios functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT blankidan functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT goldmanserge functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT detiegexavier functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations AT fedorenkoevelina functionalidentificationoflanguageresponsivechannelsinindividualparticipantsinmeginvestigations |