Cargando…
A genomic perspective on the near-term impact of doxycycline post-exposure prophylaxis on Neisseria gonorrhoeae antimicrobial resistance
Post-exposure prophylaxis with doxycycline (doxyPEP) is being introduced to prevent bacterial sexually transmitted infections (STIs). Pre-existing tetracycline resistance in Neisseria gonorrhoeae limits doxyPEP effectiveness against gonorrhea, and selection for tetracycline resistant lineages may in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055447/ https://www.ncbi.nlm.nih.gov/pubmed/36993406 http://dx.doi.org/10.1101/2023.03.14.23287223 |
Sumario: | Post-exposure prophylaxis with doxycycline (doxyPEP) is being introduced to prevent bacterial sexually transmitted infections (STIs). Pre-existing tetracycline resistance in Neisseria gonorrhoeae limits doxyPEP effectiveness against gonorrhea, and selection for tetracycline resistant lineages may influence prevalence of resistance to other antimicrobials via selection for multi-drug resistant strains. Using genomic and antimicrobial susceptibility data from 5,644 clinical isolates of N. gonorrhoeae, we assessed the near-term impact of doxyPEP on N. gonorrhoeae antimicrobial resistance. We found that the impact on antimicrobial resistance is likely to be influenced by the strength of selection for plasmid-encoded and chromosomally-encoded tetracycline resistance, as isolates with high-level, plasmid-encoded resistance had lower minimum inhibitory concentrations to other antimicrobials compared to isolates with low-level tetracycline resistance. The impact of doxyPEP may differ across demographic groups and geographic regions within the United States due to variation in pre-existing tetracycline resistance. |
---|