Cargando…
ROSE: A Neurocomputational Architecture for Syntax
A comprehensive model of natural language processing in the brain must accommodate four components: representations, operations, structures and encoding. It further requires a principled account of how these different components mechanistically, and causally, relate to each another. While previous m...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055479/ https://www.ncbi.nlm.nih.gov/pubmed/36994166 |
Sumario: | A comprehensive model of natural language processing in the brain must accommodate four components: representations, operations, structures and encoding. It further requires a principled account of how these different components mechanistically, and causally, relate to each another. While previous models have isolated regions of interest for structure-building and lexical access, and have utilized specific neural recording measures to expose possible signatures of syntax, many gaps remain with respect to bridging distinct scales of analysis that map onto these four components. By expanding existing accounts of how neural oscillations can index various linguistic processes, this article proposes a neurocomputational architecture for syntax, termed the ROSE model (Representation, Operation, Structure, Encoding). Under ROSE, the basic data structures of syntax are atomic features, types of mental representations (R), and are coded at the single-unit and ensemble level. Elementary computations (O) that transform these units into manipulable objects accessible to subsequent structure-building levels are coded via high frequency broadband γ activity. Low frequency synchronization and cross-frequency coupling code for recursive categorial inferences (S). Distinct forms of low frequency coupling and phase-amplitude coupling (δ-θ coupling via pSTS-IFG; θ-γ coupling via IFG to conceptual hubs in lateral and ventral temporal cortex) then encode these structures onto distinct workspaces (E). Causally connecting R to O is spike-phase/LFP coupling; connecting O to S is phase-amplitude coupling; connecting S to E is a system of frontotemporal traveling oscillations; connecting E back to lower levels is low-frequency phase resetting of spike-LFP coupling. This compositional neural code has important implications for algorithmic accounts, since it makes concrete predictions for the appropriate level of study for psycholinguistic parsing models. ROSE is reliant on neurophysiologically plausible mechanisms, is supported at all four levels by a range of recent empirical research, and provides an anatomically precise and falsifiable grounding for the basic property of natural language syntax: hierarchical, recursive structure-building. |
---|