Cargando…
Posterior Estimation Using Deep Learning: A Simulation Study of Compartmental Modeling in Dynamic PET
BACKGROUND: In medical imaging, images are usually treated as deterministic, while their uncertainties are largely underexplored. PURPOSE: This work aims at using deep learning to efficiently estimate posterior distributions of imaging parameters, which in turn can be used to derive the most probabl...
Autores principales: | Liu, Xiaofeng, Marin, Thibault, Amal, Tiss, Woo, Jonghye, El Fakhri, Georges, Ouyang, Jinsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055492/ https://www.ncbi.nlm.nih.gov/pubmed/36994161 |
Ejemplares similares
-
MR-based motion correction for cardiac PET parametric imaging: a simulation study
por: Guo, Rong, et al.
Publicado: (2018) -
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
Attenuation correction using 3D deep convolutional neural network for brain (18)F-FDG PET/MR: Comparison with Atlas, ZTE and CT based attenuation correction
por: Blanc-Durand, Paul, et al.
Publicado: (2019) -
Myocardial Defect Detection Using PET-CT: Phantom Studies
por: Mananga, Eugene S., et al.
Publicado: (2014) -
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation
por: Liu, Xiaofeng, et al.
Publicado: (2022)