Cargando…
Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM
Variational autoencoders (VAEs) are a popular generative model used to approximate distributions. The encoder part of the VAE is used in amortized learning of latent variables, producing a latent representation for data samples. Recently, VAEs have been used to characterize physical and biological s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055495/ https://www.ncbi.nlm.nih.gov/pubmed/36994155 |
_version_ | 1785015885132464128 |
---|---|
author | Edelberg, Daniel G. Lederman, Roy R. |
author_facet | Edelberg, Daniel G. Lederman, Roy R. |
author_sort | Edelberg, Daniel G. |
collection | PubMed |
description | Variational autoencoders (VAEs) are a popular generative model used to approximate distributions. The encoder part of the VAE is used in amortized learning of latent variables, producing a latent representation for data samples. Recently, VAEs have been used to characterize physical and biological systems. In this case study, we qualitatively examine the amortization properties of a VAE used in biological applications. We find that in this application the encoder bears a qualitative resemblance to more traditional explicit representation of latent variables. |
format | Online Article Text |
id | pubmed-10055495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cornell University |
record_format | MEDLINE/PubMed |
spelling | pubmed-100554952023-03-30 Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM Edelberg, Daniel G. Lederman, Roy R. ArXiv Article Variational autoencoders (VAEs) are a popular generative model used to approximate distributions. The encoder part of the VAE is used in amortized learning of latent variables, producing a latent representation for data samples. Recently, VAEs have been used to characterize physical and biological systems. In this case study, we qualitatively examine the amortization properties of a VAE used in biological applications. We find that in this application the encoder bears a qualitative resemblance to more traditional explicit representation of latent variables. Cornell University 2023-05-10 /pmc/articles/PMC10055495/ /pubmed/36994155 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Edelberg, Daniel G. Lederman, Roy R. Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM |
title | Using VAEs to Learn Latent Variables: Observations on Applications in
cryo-EM |
title_full | Using VAEs to Learn Latent Variables: Observations on Applications in
cryo-EM |
title_fullStr | Using VAEs to Learn Latent Variables: Observations on Applications in
cryo-EM |
title_full_unstemmed | Using VAEs to Learn Latent Variables: Observations on Applications in
cryo-EM |
title_short | Using VAEs to Learn Latent Variables: Observations on Applications in
cryo-EM |
title_sort | using vaes to learn latent variables: observations on applications in
cryo-em |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055495/ https://www.ncbi.nlm.nih.gov/pubmed/36994155 |
work_keys_str_mv | AT edelbergdanielg usingvaestolearnlatentvariablesobservationsonapplicationsincryoem AT ledermanroyr usingvaestolearnlatentvariablesobservationsonapplicationsincryoem |