Cargando…

Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM

Variational autoencoders (VAEs) are a popular generative model used to approximate distributions. The encoder part of the VAE is used in amortized learning of latent variables, producing a latent representation for data samples. Recently, VAEs have been used to characterize physical and biological s...

Descripción completa

Detalles Bibliográficos
Autores principales: Edelberg, Daniel G., Lederman, Roy R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055495/
https://www.ncbi.nlm.nih.gov/pubmed/36994155
_version_ 1785015885132464128
author Edelberg, Daniel G.
Lederman, Roy R.
author_facet Edelberg, Daniel G.
Lederman, Roy R.
author_sort Edelberg, Daniel G.
collection PubMed
description Variational autoencoders (VAEs) are a popular generative model used to approximate distributions. The encoder part of the VAE is used in amortized learning of latent variables, producing a latent representation for data samples. Recently, VAEs have been used to characterize physical and biological systems. In this case study, we qualitatively examine the amortization properties of a VAE used in biological applications. We find that in this application the encoder bears a qualitative resemblance to more traditional explicit representation of latent variables.
format Online
Article
Text
id pubmed-10055495
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cornell University
record_format MEDLINE/PubMed
spelling pubmed-100554952023-03-30 Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM Edelberg, Daniel G. Lederman, Roy R. ArXiv Article Variational autoencoders (VAEs) are a popular generative model used to approximate distributions. The encoder part of the VAE is used in amortized learning of latent variables, producing a latent representation for data samples. Recently, VAEs have been used to characterize physical and biological systems. In this case study, we qualitatively examine the amortization properties of a VAE used in biological applications. We find that in this application the encoder bears a qualitative resemblance to more traditional explicit representation of latent variables. Cornell University 2023-05-10 /pmc/articles/PMC10055495/ /pubmed/36994155 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Edelberg, Daniel G.
Lederman, Roy R.
Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM
title Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM
title_full Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM
title_fullStr Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM
title_full_unstemmed Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM
title_short Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM
title_sort using vaes to learn latent variables: observations on applications in cryo-em
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055495/
https://www.ncbi.nlm.nih.gov/pubmed/36994155
work_keys_str_mv AT edelbergdanielg usingvaestolearnlatentvariablesobservationsonapplicationsincryoem
AT ledermanroyr usingvaestolearnlatentvariablesobservationsonapplicationsincryoem