Cargando…
Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM
Variational autoencoders (VAEs) are a popular generative model used to approximate distributions. The encoder part of the VAE is used in amortized learning of latent variables, producing a latent representation for data samples. Recently, VAEs have been used to characterize physical and biological s...
Autores principales: | Edelberg, Daniel G., Lederman, Roy R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055495/ https://www.ncbi.nlm.nih.gov/pubmed/36994155 |
Ejemplares similares
-
BioVAE: a pre-trained latent variable language model for biomedical text mining
por: Trieu, Hai-Long, et al.
Publicado: (2021) -
Topological magnetic structure generation using VAE-GAN hybrid model and discriminator-driven latent sampling
por: Park, S. M., et al.
Publicado: (2023) -
Deep learning based mixed-dimensional GMM for characterizing variability in CryoEM
por: Chen, Muyuan, et al.
Publicado: (2021) -
Exploring applications of crowdsourcing to cryo-EM
por: Bruggemann, Jacob, et al.
Publicado: (2018) -
Conditional VAE in medical field
por: Zoccheddu, Sara
Publicado: (2023)