Cargando…
Selective modulation of gene expression in activated normal human peripheral blood mononuclear cells by store-operated calcium entry blocker BTP2
Calcium is a critical signaling molecule in many cell types including immune cells. The calcium-release activated calcium channels (CRAC) responsible for store-operated calcium entry (SOCE) in immune cells are gated by STIM family members functioning as sensors of Ca(2+) store content in the endopla...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055512/ https://www.ncbi.nlm.nih.gov/pubmed/36993646 http://dx.doi.org/10.21203/rs.3.rs-2618144/v1 |
Sumario: | Calcium is a critical signaling molecule in many cell types including immune cells. The calcium-release activated calcium channels (CRAC) responsible for store-operated calcium entry (SOCE) in immune cells are gated by STIM family members functioning as sensors of Ca(2+) store content in the endoplasmic reticulum. We investigated the effect of SOCE blocker BTP2 on human peripheral blood mononuclear cells (PBMC) stimulated with the mitogen phytohemagglutinin (PHA). We performed RNA sequencing (RNA-seq) to query gene expression at the whole transcriptome level and identified genes differentially expressed between PBMC activated with PHA and PBMC activated with PHA in the presence of BTP2. Among the differentially expressed genes, we prioritized genes encoding immunoregulatory proteins for validation using preamplification enhanced real time quantitative PCR assays. We performed multiparameter flow cytometry and validated by single cell analysis that BTP2 inhibits cell surface expression CD25 at the protein level. BTP2 reduced significantly PHA-induced increase in the abundance of mRNAs encoding proinflammatory proteins. Surprisingly, BTP2 did not reduce significantly PHA-induced increase in the abundance of mRNAs encoding anti-inflammatory proteins. Collectively, the molecular signature elicited by BTP2 in activated normal human PBMC appears to be tipped towards tolerance and away from inflammation. |
---|