Cargando…

Astrocytes mediate cerebral blood flow and neuronal response to cocaine in prefrontal cortex

Cocaine affects both cerebral blood vessels and neuronal activity in brain. Cocaine can also disrupt astrocytes, which are involved in neurovascular coupling process that modulates cerebral hemodynamics in response to neuronal activity. However, separating neuronal and astrocytic effects from cocain...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Yingtian, Du, Congwu, Park, Kicheon, Hua, Yueming, Volkow, Nora
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055529/
https://www.ncbi.nlm.nih.gov/pubmed/36993330
http://dx.doi.org/10.21203/rs.3.rs-2626090/v1
Descripción
Sumario:Cocaine affects both cerebral blood vessels and neuronal activity in brain. Cocaine can also disrupt astrocytes, which are involved in neurovascular coupling process that modulates cerebral hemodynamics in response to neuronal activity. However, separating neuronal and astrocytic effects from cocaine’s direct vasoactive effects is challenging, partially due to limitations of neuroimaging techniques to differentiate vascular from neuronal and glial effects at high temporal and spatial resolutions. Here, we used a newly-developed multi-channel fluorescence and optical coherence Doppler microscope (fl-ODM) that allows for simultaneous measurements of neuronal and astrocytic activities alongside their vascular interactions in vivo to address this challenge. Using green and red genetically-encoded Ca(2+) indicators differentially expressed in astrocytes and neurons, fl-ODM enabled concomitant imaging of large-scale astrocytic and neuronal Ca(2+) fluorescence and 3D cerebral blood flow velocity (CBFv) in vascular networks in the mouse cortex. We assessed cocaine’s effects in the prefrontal cortex (PFC) and found that the CBFv changes triggered by cocaine were temporally correlated with astrocytic Ca(2 +) (A) activity. Chemogenetic inhibition of astrocytes during the baseline state resulted in blood vessel dilation and CBFv increases but did not affect neuronal activity, suggesting modulation of spontaneous blood vessel’s vascular tone by astrocytes. Chemogenetic inhibition of astrocytes during cocaine challenge prevented its vasoconstricting effects alongside the CBFv decreases but also attenuated the neuronal Ca(2+) (N) increases triggered by cocaine. These results document a role of astrocytes both in regulating vascular tone of blood flow at baseline and for mediating the vasoconstricting responses to cocaine as well as its neuronal activation in the PFC. Strategies to inhibit astrocytic activity could offer promise for ameliorating vascular and neuronal toxicity from cocaine misuse.