Cargando…

Implication of FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT)

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in...

Descripción completa

Detalles Bibliográficos
Autores principales: Riedhammer, Korbinian M., Nguyen, Thanh-Minh T., Koşukcu, Can, Calzada-Wack, Julia, Li, Yong, Saygılı, Seha, Wimmers, Vera, Kim, Gwang-Jin, Chrysanthou, Marialena, Bakey, Zeineb, Kraiger, Markus, Sanz-Moreno, Adrián, Amarie, Oana V, Rathkolb, Birgit, Klein-Rodewald, Tanja, Garrett, Lillian, Hölter, Sabine M., Seisenberger, Claudia, Haug, Stefan, Marschall, Susan, Wurst, Wolfgang, Fuchs, Helmut, Gailus-Durner, Valerie, Wuttke, Matthias, de Angelis, Martin Hrabe, Ćomić, Jasmina, Doğan, Özlem Akgün, Özlük, Yasemin, Taşdemir, Mehmet, Ağbaş, Ayşe, Canpolat, Nur, Ćalışkan, Salim, Weber, Ruthild, Bergmann, Carsten, Jeanpierre, Cecile, Saunier, Sophie, Lim, Tze Y., Hildebrandt, Friedhelm, Alhaddad, Bader, Wu, Kaman, Antony, Dinu, Matschkal, Julia, Schaaf, Christian, Renders, Lutz, Schmaderer, Christoph, Meitinger, Thomas, Heemann, Uwe, Köttgen, Anna, Arnold, Sebastian, Ozaltin, Fatih, Schmidts, Miriam, Hoefele, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055578/
https://www.ncbi.nlm.nih.gov/pubmed/36993625
http://dx.doi.org/10.1101/2023.03.21.23287206
Descripción
Sumario:BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. METHODS AND RESULTS: ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. CONCLUSIONS: In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.