Cargando…
Biologically informed NeuralODEs for genome-wide regulatory dynamics
Models that are formulated as ordinary differential equations (ODEs) can accurately explain temporal gene expression patterns and promise to yield new insights into important cellular processes, disease progression, and intervention design. Learning such ODEs is challenging, since we want to predict...
Autores principales: | Hossain, Intekhab, Fanfani, Viola, Quackenbush, John, Burkholz, Rebekka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055646/ https://www.ncbi.nlm.nih.gov/pubmed/36993392 http://dx.doi.org/10.21203/rs.3.rs-2675584/v1 |
Ejemplares similares
-
Using graph convolutional neural networks to learn a representation for glycans
por: Burkholz, Rebekka, et al.
Publicado: (2021) -
Using single-index ODEs to study dynamic gene regulatory network
por: Zhang, Qi, et al.
Publicado: (2018) -
Physics-informed neural ODE (PINODE): embedding physics into models using collocation points
por: Sholokhov, Aleksei, et al.
Publicado: (2023) -
Ode to Edith
por: Kilbourne, Edwin D.
Publicado: (1989) -
Ode to Epileptologists!
por: Cherian, Ajith
Publicado: (2011)