Cargando…
scMultiSim: simulation of multi-modality single cell data guided by cell-cell interactions and gene regulatory networks
Simulated single-cell data is essential for designing and evaluating computational methods in the absence of experimental ground truth. Existing simulators typically focus on modeling one or two specific biological factors or mechanisms that affect the output data, which limits their capacity to sim...
Autores principales: | Li, Hechen, Zhang, Ziqi, Squires, Michael, Chen, Xi, Zhang, Xiuwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055660/ https://www.ncbi.nlm.nih.gov/pubmed/36993284 http://dx.doi.org/10.21203/rs.3.rs-2675530/v1 |
Ejemplares similares
-
scMultiSim: simulation of single cell multi-omics and spatial data guided by gene regulatory networks and cell-cell interactions
por: Li, Hechen, et al.
Publicado: (2023) -
TedSim: temporal dynamics simulation of single-cell RNA sequencing data and cell division history
por: Pan, Xinhai, et al.
Publicado: (2022) -
scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection
por: Zhang, Ziqi, et al.
Publicado: (2023) -
scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data
por: Zhang, Ziqi, et al.
Publicado: (2023) -
scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
por: Zhang, Ziqi, et al.
Publicado: (2022)