Cargando…
Clot Imaging Using Photostable Nanodiamond
While thrombosis is the leading cause of morbidity and mortality in the United States, an understanding of its triggers, progression, and response to anticoagulant therapy is lacking. Intravital fluorescence microscopy has advanced the study of thrombus formation by providing targeted, multi-color c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055895/ https://www.ncbi.nlm.nih.gov/pubmed/36985855 http://dx.doi.org/10.3390/nano13060961 |
_version_ | 1785015988816707584 |
---|---|
author | Francis, Samuel J. Torelli, Marco D. Nunn, Nicholas A. Arepally, Gowthami M. Shenderova, Olga A. |
author_facet | Francis, Samuel J. Torelli, Marco D. Nunn, Nicholas A. Arepally, Gowthami M. Shenderova, Olga A. |
author_sort | Francis, Samuel J. |
collection | PubMed |
description | While thrombosis is the leading cause of morbidity and mortality in the United States, an understanding of its triggers, progression, and response to anticoagulant therapy is lacking. Intravital fluorescence microscopy has advanced the study of thrombus formation by providing targeted, multi-color contrast. However, photodegradation of fluorophores limits the application in longitudinal studies (e.g., clot progression and/or dissolution). Fluorescent nanodiamond (FND) is a fluorophore which utilizes intrinsic fluorescence of chromogenic centers within and protected by the diamond crystalline lattice. Recent developments in diamond processing have allowed for the controlled production of nanodiamonds emitting in green or red. Here, the use of FND to label blood clots and/or clot lysis is demonstrated and compared to commonly used organic fluorophores. Model ex vivo clots were formed with incorporated labeled fibrinogen to allow imaging. FND was shown to match the morphology of organic fluorophore labels absent of photobleaching over time. The addition of tissue plasminogen activator (tPa) allowed visualization of the clot lysis stage, which is vital to studies of both DVT and pulmonary embolism resolution. |
format | Online Article Text |
id | pubmed-10055895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100558952023-03-30 Clot Imaging Using Photostable Nanodiamond Francis, Samuel J. Torelli, Marco D. Nunn, Nicholas A. Arepally, Gowthami M. Shenderova, Olga A. Nanomaterials (Basel) Article While thrombosis is the leading cause of morbidity and mortality in the United States, an understanding of its triggers, progression, and response to anticoagulant therapy is lacking. Intravital fluorescence microscopy has advanced the study of thrombus formation by providing targeted, multi-color contrast. However, photodegradation of fluorophores limits the application in longitudinal studies (e.g., clot progression and/or dissolution). Fluorescent nanodiamond (FND) is a fluorophore which utilizes intrinsic fluorescence of chromogenic centers within and protected by the diamond crystalline lattice. Recent developments in diamond processing have allowed for the controlled production of nanodiamonds emitting in green or red. Here, the use of FND to label blood clots and/or clot lysis is demonstrated and compared to commonly used organic fluorophores. Model ex vivo clots were formed with incorporated labeled fibrinogen to allow imaging. FND was shown to match the morphology of organic fluorophore labels absent of photobleaching over time. The addition of tissue plasminogen activator (tPa) allowed visualization of the clot lysis stage, which is vital to studies of both DVT and pulmonary embolism resolution. MDPI 2023-03-07 /pmc/articles/PMC10055895/ /pubmed/36985855 http://dx.doi.org/10.3390/nano13060961 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Francis, Samuel J. Torelli, Marco D. Nunn, Nicholas A. Arepally, Gowthami M. Shenderova, Olga A. Clot Imaging Using Photostable Nanodiamond |
title | Clot Imaging Using Photostable Nanodiamond |
title_full | Clot Imaging Using Photostable Nanodiamond |
title_fullStr | Clot Imaging Using Photostable Nanodiamond |
title_full_unstemmed | Clot Imaging Using Photostable Nanodiamond |
title_short | Clot Imaging Using Photostable Nanodiamond |
title_sort | clot imaging using photostable nanodiamond |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055895/ https://www.ncbi.nlm.nih.gov/pubmed/36985855 http://dx.doi.org/10.3390/nano13060961 |
work_keys_str_mv | AT francissamuelj clotimagingusingphotostablenanodiamond AT torellimarcod clotimagingusingphotostablenanodiamond AT nunnnicholasa clotimagingusingphotostablenanodiamond AT arepallygowthamim clotimagingusingphotostablenanodiamond AT shenderovaolgaa clotimagingusingphotostablenanodiamond |