Cargando…
Dynamic Correlation Adjacency-Matrix-Based Graph Neural Networks for Traffic Flow Prediction
Modeling complex spatial and temporal dependencies in multivariate time series data is crucial for traffic forecasting. Graph convolutional networks have proved to be effective in predicting multivariate time series. Although a predefined graph structure can help the model converge to good results q...
Autores principales: | Gu, Junhua, Jia, Zhihao, Cai, Taotao, Song, Xiangyu, Mahmood, Adnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055944/ https://www.ncbi.nlm.nih.gov/pubmed/36991611 http://dx.doi.org/10.3390/s23062897 |
Ejemplares similares
-
Hourly forecasting of traffic flow rates using spatial temporal graph neural networks
por: Belt, Eline A., et al.
Publicado: (2023) -
Road traffic flow prediction based on dynamic spatiotemporal graph attention network
por: Chen, Yuguang, et al.
Publicado: (2023) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021) -
Enhanced Adjacency Matrix-Based Lightweight Graph Convolution Network for Action Recognition
por: Zhang, Daqing, et al.
Publicado: (2023) -
On the Adjacent Eccentric Distance Sum Index of Graphs
por: Qu, Hui, et al.
Publicado: (2015)