Cargando…
The Allelopathic Effects of Trewia nudiflora Leaf Extracts and Its Identified Substances
Trewia nudiflora Linn. is a woody plant of the Euphorbiaceae family. It is well known for its use as a folk remedy, but its potential for phytotoxicity has not been explored. Therefore, this study investigated the allelopathic potential and the allelopathic substances in T. nudiflora leaves. The aqu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055956/ https://www.ncbi.nlm.nih.gov/pubmed/36987067 http://dx.doi.org/10.3390/plants12061375 |
Sumario: | Trewia nudiflora Linn. is a woody plant of the Euphorbiaceae family. It is well known for its use as a folk remedy, but its potential for phytotoxicity has not been explored. Therefore, this study investigated the allelopathic potential and the allelopathic substances in T. nudiflora leaves. The aqueous methanol extract of T. nudiflora was found to have a toxic effect on the plants used in the experiment. The shoot and root development of lettuce (Lactuca sativa L.) and foxtail fescue (Vulpia myuros L.) were significantly (p ≤ 0.05) reduced by the T. nudiflora extracts. The growth inhibition by the T. nudiflora extracts was proportional to the extract concentration and varied with the test plant species. The chromatographic separation of the extracts resulted in the isolation of two substances, identified as loliolide and 6,7,8-trimethoxycoumarin based on their respective spectral analyses. Both substances significantly inhibited lettuce growth at a concentration of 0.01 mM. To inhibit 50% of the growth of the lettuce, the required concentration of loliolide was 0.043 to 0.128 mM, while that of 6,7,8-trimethoxycoumarin was 0.028 to 0.032 mM. Comparing these values, the lettuce growth was more sensitive to 6,7,8-trimethoxycoumarin than loliolide, suggesting that 6,7,8-trimethoxycoumarin was more effective than loliolide. Therefore, the inhibition of the growth of the lettuce and foxtail fescue suggests that loliolide and 6,7,8-trimethoxycoumarin are responsible for the phytotoxicity of the T. nudiflora leaf extracts. Thus, the growth-inhibitory effectiveness of the T. nudiflora extracts and the identified loliolide and 6,7,8-trimethoxycoumarin may be used to develop bioherbicides that restrict the growth of weeds. |
---|