Cargando…
Use of Machine Learning in Interactive Cybersecurity and Network Education
Cybersecurity is a complex subject for students to pursue. Hands-on online learning through labs and simulations can help students become more familiar with the subject at security classes to pursue cybersecurity education. There are several online tools and simulation platforms for cybersecurity ed...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055967/ https://www.ncbi.nlm.nih.gov/pubmed/36991689 http://dx.doi.org/10.3390/s23062977 |
_version_ | 1785016009554395136 |
---|---|
author | Loftus, Neil Narman, Husnu S. |
author_facet | Loftus, Neil Narman, Husnu S. |
author_sort | Loftus, Neil |
collection | PubMed |
description | Cybersecurity is a complex subject for students to pursue. Hands-on online learning through labs and simulations can help students become more familiar with the subject at security classes to pursue cybersecurity education. There are several online tools and simulation platforms for cybersecurity education. However, those platforms need more constructive feedback mechanisms, and customizable hands-on exercises for users, or they oversimplify or misrepresent the content. In this paper, we aim to develop a platform for cybersecurity education that can be used either with a user interface or command line and provide auto constructive feedback for command line practices. Moreover, the platform currently has nine levels to practice for different subjects of networking and cybersecurity and a customizable level to create a customized network structure to test. The difficulty of objectives increases at each level. Moreover, an automatic feedback mechanism is developed by using a machine learning model to warn users about their typographical errors while using the command line to practice. A trial was performed with students completing a survey before and after using the application to test the effects of auto-feedback on users’ understanding of the subjects and engagement with the application. The machine learning-based version of the application has a net increase in the user ratings of almost every survey field, such as user-friendliness and overall experience. |
format | Online Article Text |
id | pubmed-10055967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100559672023-03-30 Use of Machine Learning in Interactive Cybersecurity and Network Education Loftus, Neil Narman, Husnu S. Sensors (Basel) Article Cybersecurity is a complex subject for students to pursue. Hands-on online learning through labs and simulations can help students become more familiar with the subject at security classes to pursue cybersecurity education. There are several online tools and simulation platforms for cybersecurity education. However, those platforms need more constructive feedback mechanisms, and customizable hands-on exercises for users, or they oversimplify or misrepresent the content. In this paper, we aim to develop a platform for cybersecurity education that can be used either with a user interface or command line and provide auto constructive feedback for command line practices. Moreover, the platform currently has nine levels to practice for different subjects of networking and cybersecurity and a customizable level to create a customized network structure to test. The difficulty of objectives increases at each level. Moreover, an automatic feedback mechanism is developed by using a machine learning model to warn users about their typographical errors while using the command line to practice. A trial was performed with students completing a survey before and after using the application to test the effects of auto-feedback on users’ understanding of the subjects and engagement with the application. The machine learning-based version of the application has a net increase in the user ratings of almost every survey field, such as user-friendliness and overall experience. MDPI 2023-03-09 /pmc/articles/PMC10055967/ /pubmed/36991689 http://dx.doi.org/10.3390/s23062977 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Loftus, Neil Narman, Husnu S. Use of Machine Learning in Interactive Cybersecurity and Network Education |
title | Use of Machine Learning in Interactive Cybersecurity and Network Education |
title_full | Use of Machine Learning in Interactive Cybersecurity and Network Education |
title_fullStr | Use of Machine Learning in Interactive Cybersecurity and Network Education |
title_full_unstemmed | Use of Machine Learning in Interactive Cybersecurity and Network Education |
title_short | Use of Machine Learning in Interactive Cybersecurity and Network Education |
title_sort | use of machine learning in interactive cybersecurity and network education |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055967/ https://www.ncbi.nlm.nih.gov/pubmed/36991689 http://dx.doi.org/10.3390/s23062977 |
work_keys_str_mv | AT loftusneil useofmachinelearningininteractivecybersecurityandnetworkeducation AT narmanhusnus useofmachinelearningininteractivecybersecurityandnetworkeducation |