Cargando…
Impact Ionization Coefficient Prediction of a Lateral Power Device Using Deep Neural Network
Nowadays, the impact ionization coefficient in the avalanche breakdown theory is obtained using 1-D PN junctions or SBDs, and is considered to be a constant determined by the material itself only. In this paper, the impact ionization coefficient of silicon in a 2D lateral power device is found to be...
Autores principales: | Cui, Jingyu, Ma, Linglin, Shi, Yuxian, Zhang, Jinan, Liang, Yuxiang, Zhang, Jun, Wang, Haidong, Yao, Qing, Lin, Haonan, Li, Mengyang, Yao, Jiafei, Zhang, Maolin, Chen, Jing, Li, Man, Guo, Yufeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055979/ https://www.ncbi.nlm.nih.gov/pubmed/36984929 http://dx.doi.org/10.3390/mi14030522 |
Ejemplares similares
-
Off-State Performance Characterization of an AlGaN/GaN Device via Artificial Neural Networks
por: Chen, Jing, et al.
Publicado: (2022) -
Simulation Study of the Double-Gate Tunnel Field-Effect Transistor with Step Channel Thickness
por: Zhang, Maolin, et al.
Publicado: (2020) -
A Novel Step–Doped Channel AlGaN/GaN HEMTs with Improved Breakdown Performance
por: Liu, Jianhua, et al.
Publicado: (2021) -
GAN inversion method of an initial in situ stress field based on the lateral stress coefficient
por: Qian, Li, et al.
Publicado: (2021) -
Prediction of Static Characteristic Parameters of an Insulated Gate Bipolar Transistor Using Artificial Neural Network
por: Yao, Qing, et al.
Publicado: (2021)