Cargando…
Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale
The production of bio-based composites with enhanced characteristics constitutes a strategic action to minimize the use of fossil fuel resources. The mechanical performances of these materials are related to the specific properties of their components, as well as to the quality of the interface betw...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056059/ https://www.ncbi.nlm.nih.gov/pubmed/36984320 http://dx.doi.org/10.3390/ma16062440 |
_version_ | 1785016033229144064 |
---|---|
author | Marcuello, Carlos Chabbert, Brigitte Berzin, Françoise Bercu, Nicolas B. Molinari, Michael Aguié-Béghin, Véronique |
author_facet | Marcuello, Carlos Chabbert, Brigitte Berzin, Françoise Bercu, Nicolas B. Molinari, Michael Aguié-Béghin, Véronique |
author_sort | Marcuello, Carlos |
collection | PubMed |
description | The production of bio-based composites with enhanced characteristics constitutes a strategic action to minimize the use of fossil fuel resources. The mechanical performances of these materials are related to the specific properties of their components, as well as to the quality of the interface between the matrix and the fibers. In a previous research study, it was shown that the polarity of the matrix played a key role in the mechanisms of fiber breakage during processing, as well as on the final properties of the composite. However, some key questions remained unanswered, and new investigations were necessary to improve the knowledge of the interactions between a lignocellulosic material and a polar matrix. In this work, for the first time, atomic force microscopy based on force spectroscopy measurements was carried out using functionalized tips to characterize the intermolecular interactions at the single molecule level, taking place between poly(butylene succinate) and four different plant fibers. The efficiency of the tip functionalization was checked out by scanning electron microscopy and energy-dispersive X-ray spectroscopy, whereas the fibers chemistry was characterized by Fourier-transform infrared spectroscopy. Larger interactions at the nanoscale level were found between the matrix and hypolignified fibers compared to lignified ones, as in control experiments on single lignocellulosic polymer films. These results could significantly aid in the design of the most appropriate composite composition depending on its final use. |
format | Online Article Text |
id | pubmed-10056059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100560592023-03-30 Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale Marcuello, Carlos Chabbert, Brigitte Berzin, Françoise Bercu, Nicolas B. Molinari, Michael Aguié-Béghin, Véronique Materials (Basel) Article The production of bio-based composites with enhanced characteristics constitutes a strategic action to minimize the use of fossil fuel resources. The mechanical performances of these materials are related to the specific properties of their components, as well as to the quality of the interface between the matrix and the fibers. In a previous research study, it was shown that the polarity of the matrix played a key role in the mechanisms of fiber breakage during processing, as well as on the final properties of the composite. However, some key questions remained unanswered, and new investigations were necessary to improve the knowledge of the interactions between a lignocellulosic material and a polar matrix. In this work, for the first time, atomic force microscopy based on force spectroscopy measurements was carried out using functionalized tips to characterize the intermolecular interactions at the single molecule level, taking place between poly(butylene succinate) and four different plant fibers. The efficiency of the tip functionalization was checked out by scanning electron microscopy and energy-dispersive X-ray spectroscopy, whereas the fibers chemistry was characterized by Fourier-transform infrared spectroscopy. Larger interactions at the nanoscale level were found between the matrix and hypolignified fibers compared to lignified ones, as in control experiments on single lignocellulosic polymer films. These results could significantly aid in the design of the most appropriate composite composition depending on its final use. MDPI 2023-03-18 /pmc/articles/PMC10056059/ /pubmed/36984320 http://dx.doi.org/10.3390/ma16062440 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Marcuello, Carlos Chabbert, Brigitte Berzin, Françoise Bercu, Nicolas B. Molinari, Michael Aguié-Béghin, Véronique Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale |
title | Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale |
title_full | Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale |
title_fullStr | Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale |
title_full_unstemmed | Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale |
title_short | Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale |
title_sort | influence of surface chemistry of fiber and lignocellulosic materials on adhesion properties with polybutylene succinate at nanoscale |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056059/ https://www.ncbi.nlm.nih.gov/pubmed/36984320 http://dx.doi.org/10.3390/ma16062440 |
work_keys_str_mv | AT marcuellocarlos influenceofsurfacechemistryoffiberandlignocellulosicmaterialsonadhesionpropertieswithpolybutylenesuccinateatnanoscale AT chabbertbrigitte influenceofsurfacechemistryoffiberandlignocellulosicmaterialsonadhesionpropertieswithpolybutylenesuccinateatnanoscale AT berzinfrancoise influenceofsurfacechemistryoffiberandlignocellulosicmaterialsonadhesionpropertieswithpolybutylenesuccinateatnanoscale AT bercunicolasb influenceofsurfacechemistryoffiberandlignocellulosicmaterialsonadhesionpropertieswithpolybutylenesuccinateatnanoscale AT molinarimichael influenceofsurfacechemistryoffiberandlignocellulosicmaterialsonadhesionpropertieswithpolybutylenesuccinateatnanoscale AT aguiebeghinveronique influenceofsurfacechemistryoffiberandlignocellulosicmaterialsonadhesionpropertieswithpolybutylenesuccinateatnanoscale |