Cargando…
Derivatives of L-Ascorbic Acid in Emulgel: Development and Comprehensive Evaluation of the Topical Delivery System
The dual controlled release of emulgels makes them efficient drug delivery systems of increasing interest. The framework of this study was to incorporate selected L-ascorbic acid derivatives into emulgels. From the formulated emulgels, the release profiles of actives were evaluated considering their...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056080/ https://www.ncbi.nlm.nih.gov/pubmed/36986679 http://dx.doi.org/10.3390/pharmaceutics15030813 |
Sumario: | The dual controlled release of emulgels makes them efficient drug delivery systems of increasing interest. The framework of this study was to incorporate selected L-ascorbic acid derivatives into emulgels. From the formulated emulgels, the release profiles of actives were evaluated considering their different polarities and concentrations, and consequently their effectiveness on the skin via a long-term in vivo study that lasted for 30 days was determined. Skin effects were assessed by measuring the electrical capacitance of the stratum corneum (EC), trans-epidermal water loss (TEWL), melanin index (MI) and skin pH. In addition, the sensory and textural properties of emulgel formulations were compared with each other. The changes in the rate of the release of the L-ascorbic acid derivatives were monitored using the Franz diffusion cells. The obtained data were statistically significant, and indicated an increase in the degree of hydration of the skin and skin whitening potential, while no significant changes in TEWL and pH values were detected. The consistency, firmness and stickiness of the emulgels were estimated by volunteers applying the established sensory evaluation protocol. In addition, it was revealed that the difference in hydrophilic/lipophilic properties of L-ascorbic acid derivatives influenced their release profiles without changing their textural characteristics. Therefore, this study highlighted emulgels as L-ascorbic acid suitable carrier systems and one of the promising candidates as novel drug delivery systems. |
---|