Cargando…
Multi-Depth Computer-Generated Hologram Based on Stochastic Gradient Descent Algorithm with Weighted Complex Loss Function and Masked Diffraction
In this paper, we propose a method to generate multi-depth phase-only holograms using stochastic gradient descent (SGD) algorithm with weighted complex loss function and masked multi-layer diffraction. The 3D scene can be represented by a combination of layers in different depths. In the wave propag...
Autores principales: | Quan, Jiale, Yan, Binbin, Sang, Xinzhu, Zhong, Chongli, Li, Hui, Qin, Xiujuan, Xiao, Rui, Sun, Zhi, Dong, Yu, Zhang, Huming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056174/ https://www.ncbi.nlm.nih.gov/pubmed/36985013 http://dx.doi.org/10.3390/mi14030605 |
Ejemplares similares
-
Real-time 4K computer-generated hologram based on encoding conventional neural network with learned layered phase
por: Zhong, Chongli, et al.
Publicado: (2023) -
Using the Stochastic Gradient Descent Optimization Algorithm on Estimating of Reactivity Ratios
por: Fazakas-Anca, Iosif Sorin, et al.
Publicado: (2021) -
Stochastic gradient descent for optimization for nuclear systems
por: Williams, Austin, et al.
Publicado: (2023) -
Pangenome graph layout by Path-Guided Stochastic Gradient Descent
por: Heumos, Simon, et al.
Publicado: (2023) -
Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent
por: Wang, Yuanfeng, et al.
Publicado: (2010)