Cargando…

Efficient Degradation of Alginate and Preparation of Alginate Oligosaccharides by a Novel Biofunctional Alginate Lyase with High Activity and Excellent Thermophilic Features

The enzymatic degradation of seaweed polysaccharides is gaining interest for its potential in the production of functional oligosaccharides and fermentable sugars. Herein, a novel alginate lyase, AlyRm3, was cloned from a marine strain, Rhodothermus marinus DSM 4252. The AlyRm3 showed optimal activi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Li, Cao, Shengsheng, Zhu, Benwei, Yao, Zhong, Zhu, Bo, Qin, Yimin, Jiang, Jinju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056287/
https://www.ncbi.nlm.nih.gov/pubmed/36976229
http://dx.doi.org/10.3390/md21030180
Descripción
Sumario:The enzymatic degradation of seaweed polysaccharides is gaining interest for its potential in the production of functional oligosaccharides and fermentable sugars. Herein, a novel alginate lyase, AlyRm3, was cloned from a marine strain, Rhodothermus marinus DSM 4252. The AlyRm3 showed optimal activity (37,315.08 U/mg) at 70 °C and pH 8.0, with the sodium alginate used as a substrate. Noticeably, AlyRm3 was stable at 65 °C and also exhibited 30% of maximal activity at 90 °C. These results indicated that AlyRm3 is a thermophilic alginate lyase that efficiently degrades alginate at high industrial temperatures (>60 °C). The FPLC and ESI−MS analyses suggested that AlyRm3 primarily released disaccharides and trisaccharides from the alginate, polyM, and polyG in an endolytic manner. In the saccharification process of sodium alginate (0.5%, w/v), the AlyRm3 yielded numerous reducing sugars (1.73 g/L) after 2 h of reaction. These results indicated that AlyRm3 has a high enzymatic capacity for saccharifying the alginate, and could be used to saccharify the alginate biomass before the main fermentation process for biofuels. These properties make AlyRm3 a valuable candidate for both fundamental research and industrial applications.