Cargando…

Convolutional Neural Network for Individual Identification Using Phase Space Reconstruction of Electrocardiogram

Electrocardiogram (ECG) biometric provides an authentication to identify an individual on the basis of specific cardiac potential measured from a living body. Convolutional neural networks (CNN) outperform traditional ECG biometrics because convolutions can produce discernible features from ECG thro...

Descripción completa

Detalles Bibliográficos
Autores principales: Chan, Hsiao-Lung, Chang, Hung-Wei, Hsu, Wen-Yen, Huang, Po-Jung, Fang, Shih-Chin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056305/
https://www.ncbi.nlm.nih.gov/pubmed/36991875
http://dx.doi.org/10.3390/s23063164
Descripción
Sumario:Electrocardiogram (ECG) biometric provides an authentication to identify an individual on the basis of specific cardiac potential measured from a living body. Convolutional neural networks (CNN) outperform traditional ECG biometrics because convolutions can produce discernible features from ECG through machine learning. Phase space reconstruction (PSR), using a time delay technique, is one of the transformations from ECG to a feature map, without the need of exact R-peak alignment. However, the effects of time delay and grid partition on identification performance have not been investigated. In this study, we developed a PSR-based CNN for ECG biometric authentication and examined the aforementioned effects. Based on a population of 115 subjects selected from the PTB Diagnostic ECG Database, a higher identification accuracy was achieved when the time delay was set from 20 to 28 ms, since it produced a well phase-space expansion of P, QRS, and T waves. A higher accuracy was also achieved when a high-density grid partition was used, since it produced a fine-detail phase-space trajectory. The use of a scaled-down network for PSR over a low-density grid with 32 × 32 partitions achieved a comparable accuracy with using a large-scale network for PSR over 256 × 256 partitions, but it had the benefit of reductions in network size and training time by 10 and 5 folds, respectively.