Cargando…
Investigations of Sidewall Passivation Using the Sol-Gel Method on the Optoelectronic Performance for Blue InGaN Micro-LEDs
The optoelectronic effects of sidewall passivation on micro-light-emitting diodes (Micro-LEDs) were investigated using sol-gel chemical synthesis. Blue InGaN/GaN multi-quantum well (MQW) Micro-LEDs, ranging in size from 20 × 20 μm to 100 × 100 μm and with high EQE, were fabricated and distinguished...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056319/ https://www.ncbi.nlm.nih.gov/pubmed/36984972 http://dx.doi.org/10.3390/mi14030566 |
Sumario: | The optoelectronic effects of sidewall passivation on micro-light-emitting diodes (Micro-LEDs) were investigated using sol-gel chemical synthesis. Blue InGaN/GaN multi-quantum well (MQW) Micro-LEDs, ranging in size from 20 × 20 μm to 100 × 100 μm and with high EQE, were fabricated and distinguished by the passivation method used, including no passivation, sol-gel SiO(2), and plasma-enhanced chemical vapor deposition (PECVD) SiO(2). Impressively, the sol-gel method is advantageous in improving the optoelectronic performance of Micro-LEDs. The fabricated 20 × 20 μm Micro-LEDs showed an EQE of 27.7% with sol-gel passivation, which was a 14% improvement compared to devices without sidewall passivation. Sol-gel sidewall passivation allows Micro-LEDs to effectively achieve sharper edge emission, superior surface luminous uniformity, and intensity, providing the possibility for the fabrication of low-cost and high-efficiency Micro-LEDs. |
---|