Cargando…
Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels
In order to improve the accuracy of detection results of debonding defects of aluminum alloy thin plate, the nonlinear ultrasonic technology is used to detect the simulated defect samples, aiming at problems such as near surface blind region caused by the interaction of incident wave, reflected wave...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056416/ https://www.ncbi.nlm.nih.gov/pubmed/36991719 http://dx.doi.org/10.3390/s23063008 |
_version_ | 1785016116335083520 |
---|---|
author | Tu, Jun Yao, Nan Ling, Yi Zhang, Xu Song, Xiaochun |
author_facet | Tu, Jun Yao, Nan Ling, Yi Zhang, Xu Song, Xiaochun |
author_sort | Tu, Jun |
collection | PubMed |
description | In order to improve the accuracy of detection results of debonding defects of aluminum alloy thin plate, the nonlinear ultrasonic technology is used to detect the simulated defect samples, aiming at problems such as near surface blind region caused by the interaction of incident wave, reflected wave and even second harmonic wave in a short time due to the small thickness of thin plates. An integral method based on energy transfer efficiency is proposed to calculate the nonlinear ultrasonic coefficient to characterize the debonding defects of thin plates. A series of simulated debonding defects of different sizes were made using aluminum alloy plates with four thicknesses of 1 mm, 2 mm, 3 mm and 10 mm. By comparing the traditional nonlinear coefficient with the integral nonlinear coefficient proposed in this paper, it is verified that both methods can quantitatively characterize the size of debonding defects. The nonlinear ultrasonic testing technology based on energy transfer efficiency has higher testing accuracy for thin plates. |
format | Online Article Text |
id | pubmed-10056416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100564162023-03-30 Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels Tu, Jun Yao, Nan Ling, Yi Zhang, Xu Song, Xiaochun Sensors (Basel) Article In order to improve the accuracy of detection results of debonding defects of aluminum alloy thin plate, the nonlinear ultrasonic technology is used to detect the simulated defect samples, aiming at problems such as near surface blind region caused by the interaction of incident wave, reflected wave and even second harmonic wave in a short time due to the small thickness of thin plates. An integral method based on energy transfer efficiency is proposed to calculate the nonlinear ultrasonic coefficient to characterize the debonding defects of thin plates. A series of simulated debonding defects of different sizes were made using aluminum alloy plates with four thicknesses of 1 mm, 2 mm, 3 mm and 10 mm. By comparing the traditional nonlinear coefficient with the integral nonlinear coefficient proposed in this paper, it is verified that both methods can quantitatively characterize the size of debonding defects. The nonlinear ultrasonic testing technology based on energy transfer efficiency has higher testing accuracy for thin plates. MDPI 2023-03-10 /pmc/articles/PMC10056416/ /pubmed/36991719 http://dx.doi.org/10.3390/s23063008 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tu, Jun Yao, Nan Ling, Yi Zhang, Xu Song, Xiaochun Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels |
title | Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels |
title_full | Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels |
title_fullStr | Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels |
title_full_unstemmed | Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels |
title_short | Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels |
title_sort | energy transfer efficiency based nonlinear ultrasonic testing technique for debonding defects of aluminum alloy foam sandwich panels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056416/ https://www.ncbi.nlm.nih.gov/pubmed/36991719 http://dx.doi.org/10.3390/s23063008 |
work_keys_str_mv | AT tujun energytransferefficiencybasednonlinearultrasonictestingtechniquefordebondingdefectsofaluminumalloyfoamsandwichpanels AT yaonan energytransferefficiencybasednonlinearultrasonictestingtechniquefordebondingdefectsofaluminumalloyfoamsandwichpanels AT lingyi energytransferefficiencybasednonlinearultrasonictestingtechniquefordebondingdefectsofaluminumalloyfoamsandwichpanels AT zhangxu energytransferefficiencybasednonlinearultrasonictestingtechniquefordebondingdefectsofaluminumalloyfoamsandwichpanels AT songxiaochun energytransferefficiencybasednonlinearultrasonictestingtechniquefordebondingdefectsofaluminumalloyfoamsandwichpanels |