Cargando…
Unraveling the Underlying Molecular Mechanism of ‘Silent Hypoxia’ in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway
A few days after being infected with SARS-CoV-2, a fraction of people remain asymptomatic but suffer from a decrease in arterial oxygen saturation in the absence of apparent dyspnea. In light of our clinical investigation on the modulation of molecules belonging to the renin angiotensin system (RAS)...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056466/ https://www.ncbi.nlm.nih.gov/pubmed/36983445 http://dx.doi.org/10.3390/jcm12062445 |
_version_ | 1785016128401047552 |
---|---|
author | Devaux, Christian Albert Lagier, Jean-Christophe |
author_facet | Devaux, Christian Albert Lagier, Jean-Christophe |
author_sort | Devaux, Christian Albert |
collection | PubMed |
description | A few days after being infected with SARS-CoV-2, a fraction of people remain asymptomatic but suffer from a decrease in arterial oxygen saturation in the absence of apparent dyspnea. In light of our clinical investigation on the modulation of molecules belonging to the renin angiotensin system (RAS) in COVID-19 patients, we propose a model that explains ‘silent hypoxia’. The RAS imbalance caused by SARS-CoV-2 results in an accumulation of angiotensin 2 (Ang II), which activates the angiotensin 2 type 1 receptor (AT1R) and triggers a harmful cascade of intracellular signals leading to the nuclear translocation of the hypoxia-inducible factor (HIF)-1α. HIF-1α transactivates many genes including the angiotensin-converting enzyme 1 (ACE1), while at the same time, ACE2 is downregulated. A growing number of cells is maintained in a hypoxic condition that is self-sustained by the presence of the virus and the ACE1/ACE2 ratio imbalance. This is associated with a progressive worsening of the patient’s biological parameters including decreased oxygen saturation, without further clinical manifestations. When too many cells activate the Ang II-AT1R-HIF-1α axis, there is a ‘hypoxic spillover’, which marks the tipping point between ‘silent’ and symptomatic hypoxia in the patient. Immediate ventilation is required to prevent the ‘hypoxic spillover’. |
format | Online Article Text |
id | pubmed-10056466 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100564662023-03-30 Unraveling the Underlying Molecular Mechanism of ‘Silent Hypoxia’ in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway Devaux, Christian Albert Lagier, Jean-Christophe J Clin Med Review A few days after being infected with SARS-CoV-2, a fraction of people remain asymptomatic but suffer from a decrease in arterial oxygen saturation in the absence of apparent dyspnea. In light of our clinical investigation on the modulation of molecules belonging to the renin angiotensin system (RAS) in COVID-19 patients, we propose a model that explains ‘silent hypoxia’. The RAS imbalance caused by SARS-CoV-2 results in an accumulation of angiotensin 2 (Ang II), which activates the angiotensin 2 type 1 receptor (AT1R) and triggers a harmful cascade of intracellular signals leading to the nuclear translocation of the hypoxia-inducible factor (HIF)-1α. HIF-1α transactivates many genes including the angiotensin-converting enzyme 1 (ACE1), while at the same time, ACE2 is downregulated. A growing number of cells is maintained in a hypoxic condition that is self-sustained by the presence of the virus and the ACE1/ACE2 ratio imbalance. This is associated with a progressive worsening of the patient’s biological parameters including decreased oxygen saturation, without further clinical manifestations. When too many cells activate the Ang II-AT1R-HIF-1α axis, there is a ‘hypoxic spillover’, which marks the tipping point between ‘silent’ and symptomatic hypoxia in the patient. Immediate ventilation is required to prevent the ‘hypoxic spillover’. MDPI 2023-03-22 /pmc/articles/PMC10056466/ /pubmed/36983445 http://dx.doi.org/10.3390/jcm12062445 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Devaux, Christian Albert Lagier, Jean-Christophe Unraveling the Underlying Molecular Mechanism of ‘Silent Hypoxia’ in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway |
title | Unraveling the Underlying Molecular Mechanism of ‘Silent Hypoxia’ in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway |
title_full | Unraveling the Underlying Molecular Mechanism of ‘Silent Hypoxia’ in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway |
title_fullStr | Unraveling the Underlying Molecular Mechanism of ‘Silent Hypoxia’ in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway |
title_full_unstemmed | Unraveling the Underlying Molecular Mechanism of ‘Silent Hypoxia’ in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway |
title_short | Unraveling the Underlying Molecular Mechanism of ‘Silent Hypoxia’ in COVID-19 Patients Suggests a Central Role for Angiotensin II Modulation of the AT1R-Hypoxia-Inducible Factor Signaling Pathway |
title_sort | unraveling the underlying molecular mechanism of ‘silent hypoxia’ in covid-19 patients suggests a central role for angiotensin ii modulation of the at1r-hypoxia-inducible factor signaling pathway |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056466/ https://www.ncbi.nlm.nih.gov/pubmed/36983445 http://dx.doi.org/10.3390/jcm12062445 |
work_keys_str_mv | AT devauxchristianalbert unravelingtheunderlyingmolecularmechanismofsilenthypoxiaincovid19patientssuggestsacentralroleforangiotensiniimodulationoftheat1rhypoxiainduciblefactorsignalingpathway AT lagierjeanchristophe unravelingtheunderlyingmolecularmechanismofsilenthypoxiaincovid19patientssuggestsacentralroleforangiotensiniimodulationoftheat1rhypoxiainduciblefactorsignalingpathway |